
A CYTHON INTERFACE TO EPICS CHANNEL ACCESS FOR
HIGH-LEVEL PYTHON APPLICATIONS

J. Chrin, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract
Through the capabilities of Cython (a Python-like pro-

gramming language with the performance of C/C++), a
Pythonic interface to an in-house C++Channel Access
(CA) library, CAFE, has been developed, thereby exposing
CAFE’s numerous multifaceted and user-friendly methods
to Python application developers. A number of particular-
ities of the PyCafe extension module are revealed. These
include support for (i) memoryview and other data types that
implement the new Python buffer protocol (allowing data to
be shared without copying), (ii) native thread parallelism,
and (iii) pointers to callback functions from wherein CAFE
methods may be effortlessly executed in asynchronous inter-
actions. A significant performance improvement is achieved
when compared with conventional Pythonic CA libraries.
The PyCafe interface has been realized within the context of
high-level application development at SwissFEL, Switzer-
land’s X-ray Free-Electron Laser facility.

INTRODUCTION
The Python programming language is enjoying an increas-

ing profile within accelerator facilities, and is, furthermore,
the topic of a number of tutorials and contributions to this
workshop. It is both an interpreted and object oriented pro-
gramming language, with dynamic typing and binding. Its
straight-forward syntax is advocated for promoting concise-
ness and readability, thus enhancing rapid code development.
The availability of third-party computational modules such
as NumPy [1] and SciPy [2], coupled with modules for the
visualization of multi-dimensional data [3], add to its appeal
as a platform for beam dynamics applications at SwissFEL,
Switzerland’s X-ray Free-Electron Laser [4], and elsewhere,
e.g., [5]. The very nature of Python’s dynamic semantics,
however, inevitably results in an adverse effect on perfor-
mance, especially with respect to low-level computation
involving mathematical operations and looping constructs.
Faster processing time may be achieved by using Python
modules written largely in C/C++ as is the case for NumPy
and SciPy, else by wrapping pre-existing C/C++ code or li-
braries into Python. The latter may be accomplished in a
number of ways. The more traditional approach is to use
Python’s C Application Programming Interface (Python/C
API), which necessitates a greater expertise in C than in
Python. Other methods include the use of specialized tools
such as SWIG, SIP, CFFI, the Boost.Python C++ library or
the ctypes package from Python’s own standard library.
While all of these possibilities have their own specific flavour
and target, the focus of this work is to explore the emerg-
ing Cython [6] technology to provide a high-performing
Python interface to EPICS (Experimental Physics and Indus-

trial Control System) [7, 8], through a well-tested, in-house,
C++Channel Access (CA) client library, CAFE [9–12]. In
this way, a full complement of CAFE’s multifaceted CA
methods are readily made available to application develop-
ers in Python.

THE CASE FOR CYTHON
Cython is a high-level, object-oriented, and dynamic pro-

gramming language, whose principle merit is to provide
a Python-like style of coding while maintaining the per-
formance level of C. Cython is equipped with the cython

compiler that translates Cython source code into optimised
C/C++ code, which in turn is compiled into a Python exten-
sion module. Performance enhancement is achieved through
Cython’s declaration of static C (and certain Python) type
variables and with its ability to interface to C/C++ libraries,
thus bypassing execution of bytecodes by the Python Virtual
Machine (VM). Its primary use cases can thus be anticipated.
Speed critical, CPU-bound, segments of Python code may
be shifted into the Cython domain, wherein the dynamic
Python runtime semantics are replaced by the static C se-
mantics, and existing code in external C/C++ libraries may
be natively accessed [13].
Cython is a fully-fledged language that is a super-set of

Python, making it enticingly simple to customize, simplify or
otherwise Pythonize interfaces as they are wrapped. Cython
keeps abreast with developments in the Python programming
language, accommodating new features as they appear, as
exemplified by its support for the new Python protocol buffer
and the typed memoryview object. Cython’s ability to gen-
erate highly optimized code, when compared with those of
other wrapping tools, also places it in good stead. It is thus
well suited for the task of exposing the many, well-tested,
methods of the C++CAFE library to Python.

THE PyCafe PYTHON MODULE
The PyCafe extension module exposes the Cython inter-

face to the CAFE C++ library (CyCafe). CAFE provides a
concise, complete, and clean interface with minimal details
of the low-level CA implementation propagating to the user,
and an abstract layer tailored for beam dynamics applications.
The underlying code base ensures that CAFE clients are en-
tirely decoupled from the CA servers, allowing, e.g., data
aggregator daemons and Graphical User Interfaces (GUIs)
to function in every eventuality, i.e., irrespective of changes
to the connection state of the EPICS channel. CAFE’s mul-
tifaceted interface further provides the flexibility that eases
CAFE’s use as CA host to C/C++ based scripting and domain-
specific languages [11,12]. In CyCafe, for instance, methods



with Python lists as arguments map directly onto CAFE’s
C++ vector counterparts.
The near-full complement of the Python language, with

its standard and third-party libraries, together with the given
Cython constructs, are at the developers disposal for wrap-
ping C libraries in Cython. This includes support for data
types that implement the new Python buffer protocol which
allows for their data to be shared without the need for copy-
ing, vastly improving performance in large data transfers.
In creating the CyCafe wrapper class, a proper handling
of CPython’s Global Interpretor Lock (GIL) is critical to
achieving the thread based parallelism that is essential for
establishing callbacks from within Python in asynchronous
operations.

Memoryview and Typed Memoryview Objects
The introduction of a new buffer protocol in Python

allows a number of Python built-in types, e.g., bytes,
bytearray, and extension types, such as the array.array
and numpy.ndarray arrays, and other objects that imple-
ment the protocol, to share their data without copying. The
C level buffer interface may further be exposed as a Python
memoryview object that, among other attributes, supports
slicing and indexing to expose a subview of the underlying
data. They are hence well suited to data arising from, and
destined to, EPICS waveform and subArray record types.
Cython can similarly extend the buffer protocol to work

with data arising from external libraries through the C-level
typed memoryview object, which projects, and expands on,
the Python memoryview interface. CyCafe consequently
provides interfaces that recognize such memoryview and
memoryviewslice data types.

Thread Based Parallelism
Cython uses the Python/C API to access C-level code.

CPython’s memory management is not, however, thread-
safe, necessitating a dedicated mutex, the GIL, to ensure
that only one native thread executes Python bytecodes at
any given time. External C code that does not interact with
Python objects can, however, be executed without the GIL in
effect, thus achieving thread-based parallelism. All methods
that access the low-level hardware through channel access
are done so in a non-GIL context, i.e., with the GIL released.
Without taking this necessary step of releasing the GIL,
PyCafe will otherwise hang, particularly in cases where
callbacks are involved.

C Function Pointers and Callbacks
Cython supports C function pointers allowing C func-

tions, that take function pointer callbacks as input argu-
ments, to be wrapped [14]. This feature allows users to
pass a Python function, created at runtime, to control the
behaviour of the underlying C function. Using this method-
ology, a Python callback function may be easily supplied for
any asynchronous CA interaction. The requirement for the
external CAFE library to call into the CyCafe code necessi-
tate the inclusion of a Cython generated header file into the

C++CAFE library. The header contains the functions and
methods purposely declared by Cython’s api keyword. The
Python import mechanism is then invoked within CAFE to
dynamically expose the api-declared functions.

THE PyCafe INTERFACE
Listing 1 (lines 1-3) shows how the PyCafe extension mod-

ule is imported from within a Python application and how
the Cython CyCafe object is instantiated. The CyCa class
exposes various CA and CAFE enumerated types and status
codes. The notion to establish CA connections to PVs ahead
of time, and in combination (lines 5-12), is optional but rep-
resents good practise, not least as network traffic and total
wait time are reduced. Subsequent CA operations on PVs
may be undertaken by making reference to the PV name or
its handle (as returned by cafe.open), which is an object ref-
erence to CAFE’s allotted cache for the associated PV. If the
CA connection methods are not explicitly invoked, they will
otherwise be made autonomously at the time of the first PV
data operation. Helper methods (not shown) provide infor-
mation on the association between a given PV and its handle.
CyCafe defined exceptions (PyCafe.CyCafeExpection) are,
by necessity, thrown under the disguise of the generic Python
RuntimeError exception, but may nevertheless be explicitly
tested for by the user (not shown). Alternatively, PyCafe
may be configured with the exception handler disabled for
single channel operations, such that status codes are instead
returned. On application exit, the cafe.terminate method
(line 60) closes all PV connections, deletes their handles,
and releases all CA resources. A few selected PyCafe data
read, write and monitor transactions are presented.

Read and Write Operations
Listing 1 shows the Python syntax for selected syn-

chronous and asynchronous, single and multiple channel
data transactions through PyCafe. Methods operating on
scalar values support the two basic Python numeric types,
namely float and int and the string type, str. The Python
equivalent of the PV’s native data type is the default type
in data retrieval operations, unless otherwise specified by
the dt argument keyword (line 16). Where timestamps
and alarm conditions are required, methods that return the
pvData struct are invoked (lines 21-22).
A number of data retrieval operations are accompanied

by an equivalent ‘cache’ method that retrieves the last value
written into CAFE’s internal buffer. These are typically used
in conjunction with asynchronous data access interactions
and, if necessary, will wait until the asynchronous operation
has provided a value or a timeout has been reached (cf. future
class). Since the underlying CAFEC++ library separates data
acquisition from data representation, data of any type may
be requested from cache (lines 43-46).
Data from EPICS waveform and subArray records are

retrieved using the cafe.getArraymethod (lines 25-26). In
addition to the standard Python built-in array types, Cython
array features provide support for NumPy arrays and typed



memoryviews. The array type may be indicated through
the art argument keyword, which may take on one of a
number of self-explanatory options (line 17). Cython’s typed
memoryview is converted to a regular Python memoryview

by CyCafe when passed as a return value.
Control system parameters may be retrieved as shown

(lines 27-28). Since these data are typically static it is usu-
ally sufficient to retrieve them from cache, which is always
populated on (re-)connection, if not otherwise.
The set method interrogates the form of the data input

argument and can accommodate any meaningful type (lines
29-30).
The aggregation of channels, whether related or unre-

lated, into a collection allows several requests to be deliv-
ered within a single method invocation, thereby minimizing
network traffic and increasing efficiency. Such methods are
shown for scalar (lines 36-38) and compound (lines 39-41)
data sets. The data container here is itself a Python list,
which may legitimately contain elements of different data
types (as may arise, e.g., in data retrieval operations that
render the data from unrelated channels in their native type).
Compound operations differ from their scalar counterparts
in that they may also contain a list within a list, e.g., to
accommodate waveforms.
Channels may, alternatively, be gathered into a named

group to profit from the EPICS synchronous group func-
tionality. Here the group acts as a single logical software
entity and subsequent transactions are invoked through in-
tuitive methods that reference the group either by name or
handle (lines 48-55). Where associated timestamps and
alarm status and severity data are required, a pvgroup ob-
ject may be returned that contains a sequence of pvdata
objects. While synchronous groups are simple and inex-
pensive to create, they have the inherent disadvantage that
a timeout on a group operation is unable to inform on the
offending channel(s), consequently rendering the returned
data unreliable. (The underlying CAFE library, inciden-
tally, operates a self-regulating timeout policy to increment
timeouts in cases where the setting has not been optimized
for the local network capacity). To overcome this defi-
ciency, where data from synchronous group operations can-
not be verified due to a timeout, a multiple channel trans-
action, i.e., cafe.getCompoundPVList (lines 57-59), is au-
tonomously invoked and the resulting data is repackaged
into the pvgroup object. In this way, and oblivious to the
end-user, data integrity and error reporting are ensured for
each individual channel within the group. Indeed, use of
this latter method may be preferred by some users over the
synchronous group option.
The multiple channel methods presented do not throw

CAFE exceptions requiring the user to first check on the
overall status of the method invocation; only on error need
the status code for the individual channels be examined.

Monitors
A Python callback function may be easily supplied to

any asynchronous operation, whether this be a set, get, or

Listing 1: PyCafe Read/Write Examples
1 import PyCafe

2 cafe = PyCafe.CyCafe()

3 cyca = PyCafe.CyCa() #ca enums, status codes

4

5 pvList=['pv1','pv2','pv3',...]

6 waitTime=1.0 #seconds

7 try:

8 cafe.openPrepare()

9 hList = cafe.open(pvList] #ret. handles

10 cafe.openNowAndWait(waitTime)

11 except Exception as e:

12 ...

13

14 #<handlePV> in {hList[0], pvList[0]}

15 #<hPVList> in {hList, pvList}

16 #dt = {'native', 'int', 'float', 'str'}

17 #art = {'memoryview', 'numpy', 'array', ...}

18 try:

19 #get value in native (default) type

20 value = cafe.get(handlePV)

21 #returns structured data, value as float

22 pvData = cafe.getPV(handlePV, [dt='float'])

23 #waveform, returns list in native type

24 valList = cafe.getList (handlePV, [dt='native'])

25 #waveform, returns memoryview in native type

26 mv = cafe.getArray(handlePV, [art='mv'])

27 #control parameter data from cache

28 pvCtrl = cafe.getCtrlCache(handlePV)

29 #write operation for scalars and waveforms

30 cafe.set(handlePV, value) #value, any data type

31 except Exception as e:

32 ...

33

34 #synchronous multiple channel operations

35 #s gives overall status

36 #vList,sList, individual scalar values/status

37 vList,s,sList = cafe.getScalarList(<hPVList>)

38 s,sList = cafe.setScalarList(<hPVList>, vList)

39 #valList may contain lists within a list

40 valList,s,sList = cafe.getCompoundList(<hPVList>)

41 s,sList = cafe.setCompoundList(<hPVList>, valList)

42

43 #asynchronous multiple channel operations

44 s,sList = cafe.getAsyn(<hPVList>)

45 #apply any future cache method

46 pvData = getPVCache(<hPVList[0]>, [dt='float'])

47

48 #synchronous group operations

49 s = cafe.defineGroup('groupName', pvList)

50 groupHandle = cafe.openGroup('groupName')

51 #<gHandleName> in {groupHandle,'groupName'}

52 valList,s,sList = cafe.getGroup(<gHandleName>)

53 s,sList = cafe.setGroup (<gHandleName>, valList)

54 #returns a pvgroup object, with native data types

55 pvgroup = cafe.getPVGroup(<gHandleName>)

56

57 #returns pvgroup from a multiple channel operation

58 pvgroup = cafe.getCompoundPVGroup(<gHandleName>,

59 [dt='native'])

60 cafe.terminate() #tidy up



monitor. This is highlighted in Listing 2 where a monitor on
a PV is activated. Optional keyword arguments govern the
behaviour of the monitor. A notable aspect of the PyCafe
interface, here, is that only the handle (i.e., object reference)
is, and need be, reported back to the callback function. Since
the CAFE API takes the provision to cache the data in its
internal storage, the user may call upon any one of a number
of CAFE methods that retrieve data directly from the cache.
The precedence of sifting through Python dictionaries is
dispensed with. A typical use case of the callback would be
to trigger the passage of data to a graphical widget.

The CAFE connection event handler has also been config-
ured to trigger the given callback in the event of a channel
disconnection or reconnection.

Listing 2: PyCafe Monitor Example
1 ...

2 #Callback function

3 def py_callback(handle):

4 #Any method that retrieves data from cache

5 pvData=cafe.getPVCache(handle, [dt='str'])

6 #user supplied code

7 ...

8 return

9 ...

10 #start monitor with user supplied callback

11 mon=cafe.monitorStart(<handlePV>, cb=py_callback,

12 [dbr=cyca.CY_DBR_TIME],

13 [mask=cyca.CY_DBE_VALUE|cyca.CY_DBR_ALARM])

14 ...

PERFORMANCE IMPROVEMENTS
Cython, in certain use cases, has the potential to enhance

performance for CPU-bound operations by several orders of
magnitude. Performance differences between Python and
Cython are significantly decreased, however, for memory-,
input/output-, and network-bound operations. As channel
access transactions involve movement of data across the net-
work, the resulting latency is dominated by the data transfer.
This, consequently, allows for some leeway in the design
of the interface. For instance, in certain cases, static type
declaration for arguments can be omitted, preserving flexi-
bility without detriment to performance. This is evident in
methods that accept either a process variable name or object
handle as a positional argument. Nonetheless, PyCafe, due
to Cython’s generated optimized C++ code, still manages a
performance enhancement of ∼ 40% when compared with
ctypes, which are subject to their Python call overhead. For
large waveforms, e.g., ∼ 106 elements, the difference in per-
formance between Python and Cython essentially vanishes.

SUMMARY
The Cython programming language has been used to in-

terface the external C++CAFE library to Python, thereby

providing a well-tested, high-performance, and extensive
channel access interface to high-level beam dynamics appli-
cation developers at SwissFEL. The project software may
be downloaded from the CAFE website [9], where further
examples of various usages are given.

ACKNOWLEDGMENTS
The author is grateful toMasamitsu Aiba, whose extensive

use of PyCafe in the SwissFEL virtual accelerator, deploying
a few thousand EPICS soft channels, led to improvements
to CAFE’s functionality and verified its Cython interface.

REFERENCES
[1] NumPy, http://numpy.org

[2] SciPy, http://scipy.org

[3] J. D.Hunter, “Matplotlib: A 2D graphics environment”, in
IEEE Computing in Science and Engineering, vol. 9, no. 3,
pp. 90–95, May/Jun. 2007, doi:10.1109/MCSE.2007.55;
matplotlib, http://matplotlib.org

[4] SwissFEL Conceptual Design Report, R. Ganter, Ed. PSI,
Villigen, Switzerland, Rep. 10-04, Version Apr. 2012.

[5] T. Zhang, J. H. Chen, B. Liu, and D.Wang, “Python-based
high-level applications development for Shanghai soft X-ray
free-electron laser”, in 12th Int. Computational Accelerator
Physics Conf. (ICAP’15), Shanghai, China, Oct. 2015, pp. 23–
25, doi:10.18429/JACoW-ICAP2015-MODWC4

[6] Cython C-Extensions for Python, http://cython.org

[7] EPICS, http://www.aps.anl.gov/epics/.

[8] J. O. Hill and R. Lange, “EPICS R3.14 Channel Access Ref-
erence Manual”,
http://www.aps.anl.gov/epics/docs/ca.php

[9] CAFE, http://ados.web.psi.ch/cafe/.

[10] J. Chrin and M.C. Sloan, “CAFE, A modern C++ interface to
the EPICS channel access library”, in Proc. 13th Int. Conf.
on Accelerator and Large Experimental Physics Control Sys-
tems (ICALEPCS’11), Grenoble, France, Oct. 2011, paper
WEPKS024, pp. 840–843.

[11] J. Chrin, “MATLAB objects for EPICS channel Access”, in
Proc. 14th Int. Conf. on Accelerator and Large Experimental
Physics Control Systems (ICALEPCS’13), San Francisco, CA,
USA, Oct. 2013, paper MOPPC146, pp. 453–456.

[12] J. Chrin, “An update on CAFE, a C++ channel access client
library and its scripting language extensions”, in Proc. 15th
Int. Conf. on Accelerator and Large Experimental Physics
Control Systems (ICALEPCS’15), Melbourne, Australia,
Oct. 2015, pp. 1013–1016,
doi:10.18429/JACoW-ICALEPCS2015-WEPGF132

[13] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn,
and K. Smith, “Cython: The best of both worlds”, IEEE Com-
puting in Science and Engineering, vol. 13, no. 2, pp. 31–39,
Mar./Apr. 2011, doi:10.1109/MCSE.2010.118

[14] K.W. Smith, in Cython, Sebastopol, CA, USA: O’Reilly Me-
dia, Inc., Jan. 2015, pp. 128–134.


