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2.9  Storage Ring Injection

2.9.1  Overview

The Storage Ring injection requires five magnet systems:
Kicker K1
Kicker K2
Kicker K3
Kicker K4
Septum Y12

An overview of the equipment placement is shown in Fig.f291_a. Fig.f291_b shows the
general layout of the Storage Ring injection magnets in the machine tunnel.  These magnet
systems are summarised in Tables t291_a and t291_b.

Magnet Technology Metallised ceramic chamber, with
conductor and ferrite core in air

Magnet Deflection 4.5mrad
Circulating Beam Aperture +/-45mm (H) x 40mm (V)
Magnet Length 600mm
Magnet Field 65mT
Magnet Inductance ≈1.3µH
Magnet Current 2.5kA
Magnet Current Waveform Over-damped half-sine,

around 6µs length
Total Non-Systematic Error <1.0% horizontal, 34µrad vertical

Table t291_a:  Summary of Storage Ring Kickers K1-K4.

Magnet Technology Eddy current, with electron beam chamber
and magnetic screen

Magnet Deflection 5.0o

Circulating Beam Aperture +45/-18mm (H) x 24mm (V)
Injected Beam Aperture 25mm (H) x 6mm (V)
Magnet Length 800mm
Septum Thickness 3mm
Magnetic Field 0.87T
Leakage Deflection 0.01% horizontal, 6µrad vertical
Magnet Inductance 4.0µH
Magnet Current 4.2kA
Magnet Current Waveform Single-cycle sine, 120µs duration
Total Non-Systematic Error <0.6% horizontal, 430µrad vertical

Table t291_b:  Summary of Storage Ring Septum Y12.



26.10.98 19:57 SLS Handbook, hb2_9.doc 2/16

The Storage Ring kickers are operated at identical currents to give a symmetric 15mm bump
to the stored electron beam.  The septum Y12 is similar to the Booster septa Yi and Ye.  The
septum magnets use an improved eddy current design, with preliminary measurements
indicating a peak leakage field below 0.01%.

Initial investigation (Ref.4) showed that top-up injection into the Storage Ring was not
possible without giving a small disturbance to the beam-line experiments; the approach taken
is to provide additional timing pulses to experiments which permit a momentary pause in data
acquisition, if required.

The error tolerances are under continuing study (Ref 1-5).  The error estimates given in the
above Tables are worst-case values for these magnet systems; typical operational values
should be much less.

Several possibilities for placement of the kickers and septum in the long straight were
investigated, giving rather similar deflection requirements; the placement of Y12 shown in
Fig.f291_b is found by minimising the kicker deflection while still permitting passage of
Transfer Line 2 past the kicker K2.

2.9.2  Kicker Technology
The whole aspect of kicker technology was re-evaluated (Ref.6 - 55).  The use of
semiconductor switches is attractive to avoid on-going maintenance of thyratrons, and also to
reduce equipment cost.

The possibility of using a slotted line kicker (Ref.13 - 15) was seriously considered for the
Storage Ring.  However, to maximise the use of the Storage Ring, nearly complete filling
pattern is needed.  In this case, the injection bump must give a perfectly smooth time
transition.  In particular, it is vital to match the transverse fields of the inner two magnets K2
and K3.  A metallised ceramic chamber is much better than the slotted line magnet in this
respect.  Regrettably, the metallised ceramic chambers are also a much more expensive
technology.

2.9.3  Kickers K1-K4
The ideal is to have four identical kickers with field waveforms that track each other in time to
permit top-up injection with small perturbation of the stored electron beam.  A reasonable
effort is to be put towards minimising tracking error, so that the duration of the stored beam
disturbance is minimised.  The pulsed power supplies and magnets would feature precise
temperature control.  Each magnet is fitted with a flashing warning light and interlock
switches over the access hatches, for personnel safety.

Experience indicates that unexpected overheating of the ceramic chamber by the circulating
electron beam is a problem.  For the SLS, the external magnetic field pulse is a relatively slow
half-sine pulse; eddy current losses can be high, since the requirement is only that the four
kickers give identical magnetic field pulses.  The resistivity for the metallisation is
0.15Ω/square +/-20%; this would give losses in the ceramic of <10W, not counting the
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resistive loss due to the RF contact fingers.  An even lower value of resistance is not advisable
because the uniformity of the metallisation is not so high; in turn, this means that the large
eddy current attenuation of the kicker field would be different in each chamber.  The
metallisation thickness would be equated to the surface roughness of the ceramic.

Overheating is still a concern, so these magnets should be designed to permit forced air
cooling.  This means that an "H-frame design" is preferred over a "window-frame design",
since there is space for cooling air.  The conductors are held in place with precise machined
insulating plates, and the ferrite with high conductivity contact strips.

The field homogeneity is good because of the large vertical gap, but the homogeneity risks
being limited by non-uniformity of the metallisation.  The coil voltages are low, and the
choice is made to have no conductor encapsulation.

The vertical beta-function in the injection straight is normally below 10m, while the
maximum in the Storage Ring (where the standard chamber height is 35mm) is about 22m.
Thus the vertical aperture could be reduced to 35mm x 10/22 = 14.5mm.  However, with this
reduced aperture, the electron beam image current would be concentrated on a very narrow
strip of the metallisation.  As an engineering compromise, a ceramic chamber height of 28mm
is chosen, giving +/- 6.75mm clearance for chamber dimension errors, RF finger contacts and
chamber alignment errors.  In turn, this gives a reasonable magnet current of about 2kA.

The window-frame magnet design with a metallised ceramic chamber is is shown in
Fig.f293_a. The outer edge of the ceramic chamber has 10mm X-ray clearance.

A circuit for the pulser is shown in Fig.f293_b. An SCR switch is shown, but this could also
be a thyratron.  The switch requires 10-20µsec to turn off, so to prevent reverse current
flowing, all the energy is discharged.  The circuit shows two diode discharge paths.  The
discharge resistances are low value, and would be implemented with precision coaxial rods of
resistive metal; this type of resistance would be very stable.  The simulation result is in
Fig.f293_c. The current rise is quasi-sinusoidal, and the fall is quasi-exponential.  The total
pulse length is greater than the required value of 6µsec, but the long discharge tail should be
highly reproducible.  Circuit improvements are being investigated.

2.9.4  Septum Technology

The choice was made to use a common design for all of the septum magnets and their vacuum
tanks, to reduce design effort.  Ref.1 gives a pulse length for a given flat-top accuracy, and
this optimum value is around 70µsec.  A survey of previous septum designs showed that a
peak leakage field of 0.06% was typical, except for Eddy Current designs where the values
were around 1%.

The advantages of an Eddy Current design are:
• simpler magnet - less cost for construction;
• reduced risk of insulation failure;
• curved magnet giving monotonic decrease of stray field away from region of septum exit

(rectangular block construction typical for Front-Leg design gives peak stray fields at both
ends);

• low electron beam impedance is easily achieved;
• septum presents no cooling problem.
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The advantages of Front-Leg design:
• stray field appears only during current pulse (diffusion current in an Eddy Current design

lasts several hundred microseconds afterwards);
• stray field might be much less than for an Eddy Current design, but this is dependant upon

design and assembly tolerances;
• current pulse length could be increased if really necessary, for improved current

measurement accuracy.

There are reported large improvements in leakage field for both Front Leg (Ref 60) and Eddy
Current (Ref 56) designs by adding a low permeability electron beam chamber.  The choice
for SLS is an eddy current design; to reduce the risk to the project, a prototype eddy current
magnet incorporating a magnetic screen chamber was tested.

The short magnet pulses means that the energy dissipated in the magnet is around 10W.  The
worst case dissipation occurs if a full energy beam from the booster is lost at the 3Hz rate on
the septum conductor; this amounts to 0.01A x 2.4GeV x 3Hz x 700nsec, or 50W.  The
cooling channels are placed as close as possible to the septum for this reason.  The water flow
is given by

Flow kg s
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where κ is the specific thermal capacity of water, 4174J/kgoC.  The water flow is set to have a
flow that is reliably measured; a value of 0.05L/s is chosen, giving a negligible temperature
rise in normal operating conditions.

The septum magnets will be housed in similar vacuum chambers.  Fig. f294_a and f294_b
show a typical tank.  The ribs inside the tank are machined flat after welding to give the
required horizontal mechanical tolerances.  Precision locating holes are drilled into these ribs,
and also on the top surface of the tank to give on-axis alignment points.  The easy top access
to the rectangular tank is an important feature to avoid assembly difficulties.  The pulsed
power supply is mounted directly beside the tank, and features a thermostatically-controlled
cooling fan to maintain the capacitors at a constant temperature.  Each tank is fitted with a
flashing warning light and interlock switches over the access hatches, for personnel safety.

2.9.5  Septum Y12

The septum Y12 has a electron beam chamber added to the eddy current septum to present a
continuous profile to the circulating beam.  This chamber is made from 0.5mm stainless steel.
The outgassing surface of the 0.2mm magnet laminations is large - perhaps 60m2 - which is
comparable to the entire vacuum surface of the rest of the Storage Ring.  The stainless steel
chamber has the secondary purpose of giving a very low gas conductance from the
laminations to the circulating electron beam.  Two large (500L/s) pumps are installed on the
Transfer Line side to maintain a reasonably low gas pressure, <10-8 mbar, and the Storage
Ring gas pressure should remain <10-9 mbar.

The provisional choice is made to have Y12 without any mechanical translation in the
horizontal plane.  Any experiments concerning the septum placement can be implemented
with four DC magnets, powered in series, to give an additional bump in the long straight
section.  In the distant future, it may be possible to use a small transient currents, generated by
a DSP card, to correct the residual errors in K1-K4.
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The vertical injected beam clearance required is estimated solely from gross beam steering
errors during commissioning at 6mm.  The horizontal injected beam clearance of 25mm is not
required for injected beam clearance, but gives an inductance which is reasonably large with
respect to stray inductances.

The basic pulser circuit for all the septa is shown in Fig.f295_b; the magnet and capacitor
values are indicative only.  The relevant stray inductances, resistances and capacitances are
included.  Experimentation with the prototype septum showed that the leakage field could be
greatly reduced by using a bipolar current pulse, not unipolar.  In addition, no extra work was
required to build a pulser which gave a bipolar pulse.

In Fig.f295_b, the capacitor C1 is charged from a 1.2kV / 0.01A constant current supply; a
charging switch U1 is shown to isolate the charging supply from the discharge transient.  The
SCR X1 discharges the capacitor through the magnet L2.  After the current has passed the
maximum value, the capacitor becomes negative with respect to ground, and the recharging
current starts to flow through D1 and D2.  This gives a 50µs interval for the SCR recovery.
However, D1 and D2 then have a turn-off transient, so the modest snubber network C4 / R7 /
L8 limits the dV/dt across the SCR to give a safety margin against re-triggering.  The
measured values for the important inductance between the SCR and D1/D2 are exceptionally
small, but the mesured results in Fig.f295 c confirm these.  The capacitor voltage before and
after the pulse indicate the energy loss, using

E
CV

max =
2

2
For the 4kA pulse in Fig.f295 c, the energy before the pulse was 19.7J and after 13.1J.  Thus
each pulse dissipates only 6.6J in the entire circuit, i.e 20W for 3Hz operation.  About half of
this loss is in pulser, not the magnet.

The control circuit for these supplies is relatively simple, and will be modeled on the ESRF
design (Ref 72).  Features of the pulse power supplies are:
• two independent current transformers, one for regulation and one for Control Room

monitoring;
• a SCR gate driver with sub-microsecond accuracy;
• a timing circuit which fixes the trigger-to-peak current time delay;
• temperature stabilisation for the discharge capacitors;
• physically small pulser mounted in the machine tunnel;
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Figure f291_a:.  General Placement of Equipment in the SLS
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Fig.f291_b:  Storage Ring injection configuration.
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Kicker K2 (“H-Frame version”)

With LC Pulser
PARAMETER GIVEN VALUE DERIVED VALUE
Maximum Particle Energy E (GeV) 2.4 GeV
Magnet Gap Length l (mm) 600  mm
Angle (mrad) 4.5 mrad
Bending Radius 133.33 m
Field Intensity 0.0600 T
Magnet Gap Width w (mm) 55  mm
Magnet Gap Height g (mm) 40  mm
Number of turns on magnet 1  turns
Magnet Inductance 1.04 uH
Peak Current 1911 A
Energy in Magnet 1.9 J
Flat-top tolerance (+/-) .1
Particle Beam Duration (usec) .7  usec
Recommended Resonating Capacitor 4.6 uF
Recommended Capacitor Tolerance 28.5%
Recommended Half-Sine Pulse 6.9 usec
Go conductor X-section perimeter (mm) 50  mm
Return conductor X-section perimeter(mm) 50  mm
Resistive Loss per Cycle 21.2 mJ
Core Loss per Cycle 232.8 mJ
Pulse Repetition Rate (Hz) 3  Hz
Power Loss 762.0 mW
Capacitor Voltage 935 V

Fig f293_a:  Basic parameters for the Storage Ring kicker.
The dotted lines show the standard vacuum chamber cross-section.
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Fig f293_b:  Pulser simulation circuit for Storage Ring kickers.
Component values are indicative only.

Fig f293_c:  Simulation results for Fig f293_b
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Storage Ring  Septum

PARAMETER GIVEN
VALUE

DERIVED
VALUE

Maximum Particle Energy E (GeV) 2.4 GeV
Magnet Gap Length l (mm) 800  mm
Angle (mrad) 87 mrad
Bending Radius 9.20 m
Field Intensity 0.871 T
Magnet Gap Width w (mm) 25  mm
Magnet Gap Height g (mm) 6  mm
Number of turns on magnet 1  turns
Magnet Inductance 4.19 uH
Peak Current 4157 A
Energy in Magnet 36.2 J
Flat-top tolerance (+/-) .001
Particle Beam Duration (usec) .7  usec
Recommended Resonating Capacitor 62.0 uF
Recommended Capacitor Tolerance 2.8%
Recommended Half-Sine Pulse 50.6 usec
Go conductor X-section perimeter
(mm)

38  mm

Return conductor X-section
perimeter(mm)

38  mm

Resistive Loss per Cycle 476.9 mJ
Core Loss per Cycle 6.6 J
Pulse Repetition Rate (Hz) 3  Hz
Power Loss 21.4 W
Capacitor Voltage 1133 V

Fig.f295_a:  View at EXIT of Storage Ring Septum, with magnet parameters.
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Fig.f295_b:  Basic circuit for septum pulser for simulation.
The component values are indicative only.

Fig.f295_c:  Measured magnet current and switch voltage of the prototype pulser.
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Fig f294_a:  Typical vacuum tank for Septum Magnets

Fig f295:  Ray-tracing to find minimum horizontal aperture of the vacuum chamber.
Four lumped absorbers are necessary to give reasonable aperture for the injection elements.


