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The  SLS  is  a  low  emittance  and  2.4  GeV  energy  storage  ring  with  TBA  lattice
configuration. It has three long (11m), three medium (7m) and two short (4m) straight
sections with zero dispersion. The four of these, a long (9L), a medium(11M) and two
short straight sections (4S,6S)  are used to install the various types of Insertion Devices
(IDs) to  obtain  the  photon  beams  in  energy  range  of  10  eV  to  40  keV.  The  two
electromagnetc elliptic undulators EEW (2xUE212) and two helical undulators of Apple
II/ Sasaki-type (2xUE56) will be installed in 9L and 11M respectively and operated in
double undulator. The two planar IDs,  wiggler W61 and in-vacuum undulator U24 will
be installed in straight sections 4S and 6S respectively. Later on, U24 will be replaced by
another  in-vacuum  planar  undulator  U17.  The  elliptical  twin-undulators  UE212  will
produce  two parallel  photon  beams  with  opposite  linear  and  circular  polarization  by
producing  parallel  offset  of  1mm  of  electrom  beam  in  two  undulators.  The  twin-
undulators UE56 can be tuned to produce the photon beams of any degree of polarization
from circular to linear. The variable and different  polarization is achieved by producing
variable and different field distributions in two undulators. The electron beam will have
parallel offset of 1mm in this case also. 
The IDs perturb the linear and non-linear beam dynamics of the storage ring. It can limit
the dynamic aperture as well  as tune space available for machine operation. Thus can
have  severe  effects  on  injection  efficiency and  beam life  time.  Therefore,  it  is  very
important  to  understand  the  beam  dynamics  theoretically   as  well  as  to  investigate
numerically for optical performance of storage ring. The numerical studies can reveal if
any re-tuning  of   machine  optics  is  required  locally,  globally  or  both.  The  detailed
theoretical and numerical investigations have been carried out to understand the beam
dynamics  with various types of IDs planned at SLS and presented in this report.
The various mathematical and simulation models developed at various labs are studied in
order  to  choose  the  appropriate  models  for  simulation  studies  of  EEW and Apple  II
devices. The simulation model developed by G. Wüestefeld et al. at BESSY-II and  L.
Tosi  et  al.  of  ELETTRA for  simulation  studies  for  Apple  II and  EEW  devices  and
implemented in  computer  codes  BETA and RACETRACK respectively are discussed
briefly.  The  consideration  of   effects  of  End-Pole  design  in  a  simulation  model  is
important and discussed here. 

2. Theoretical Aspects :

The insertion devices (IDs) are special magnetic devices consisting of sequence of dipoles
with alternative polarities and arranged so that there is no net deflection and displacement
of the beam when it  passes  them. But  they cause the perturbation of a motion of an
electron in the storage ring due to linear and non-linear field perturbations introduced by
them. The distortions of linear optics are generated by the edge focusing of magnetic
poles. It destroys the super-periodicity of the lattice. The presence of highly non-linear
fields limits the amplitude of stable electron motion or dynamic aperture of the ring. The
edge focusing introduces the additional quadrupole-like effects in the ring. It causes the
change in betatron tunes or phases and the modulation of betatron functions called as � -
asymmetries  or  beta-beating.  These  perturbations  break  the  very  high  symmetry  for
chromaticity correcting sextupoles  distributed over  the  ring.  The symmetry break can
excite additional structural resonances and hence can further limit the dynamic aperture
of the ring. Also, the strong � -asymmetries can reduce the life time of the beam and can
affect the other users of the ring due to the change in beam sizes. The non-linear fields of
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these  devices  produce  the  amplitude-dependent  tune-shifts  and  can  excite  new
resonances. The amplitude-dependent tune-shifts can drive machine operation near other
resonance. It can reduce the dynamic aperture significantly and hence the life time of the
beam. Therefore, it  is very important to obtain the analytic descriptions as well  as to
understand theoretically the beam dynamics of a storage ring in presence of these devices.

2.1 Description of  Magnetic field :

The magnetic field components of an ideal elliptic insertion device are given as;

Bx = B0 (kx/ky) sh(kxx)sh(kyy) cos(kz) + B� o ch(k� xx) ch(k� yy) sin(kz)

By = B0 ch(kxx) ch(kyy) cos(kz) + B� o (k� y/k � x) sh(k� xx) sh(k� yy )sin(kz) (2.1.1)

Bz = -B0 (k/ky) ch(kxx) sh(kyy) sin(kz) + B� o (k/k� x) sh(k� xx) ch(k� yy) cos(kz)

Where :  x, y are transverse co-ordinates and  z is the axis of device or longitudinal co-
ordinate.
B� 0 and B0 are the horizontal and vertical  magnetic fields on the axis of the device.
The  magnetic field must satisfy the Maxwell’s equations and therefore;

div B = 0

This leads to the following relations; 

kx
2 + ky

2 = k2    and  k� x
2 + k� y

2 = k2

Where : k = 2 � /�   and  �  is the period length of an insertion device.
The different names are given depending upon the fields Bo , B� o  of a  device and are as
follows;

a. B� o =  0  : horizontal  planar  insertion  device,  in  which  on  axis  particle  oscillates
(wiggle) in the horizontal plane (x-s plane). 

b. Bo = 0 : vertical planar insertion device, in which the on axis particle oscillates  in the
vertical plane (y-s plane).

c. Bo = B� o : helical insertion device, in which the on axis particle oscillates in both planes
with same amplitude( helical wiggling).

d. Bo   �   B� o : elliptic insertion device, in which on axis particle oscillates in both planes
with different amplitudes ( elliptic helical wiggling). 

2.2  Beam Dynamics :

The beam dynamics with insertion devices can be understood well using a Hamiltonian
formalism. A Hamiltonian  for an electron motion around a wiggling orbit in  a planar
insertion device was first derived by  L. Smith[1].  Later on, it  was derived for helical
insertion device by L. Tosi[2]. In order to understand the beam dynamics with pure elliptic
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devices for SLS as it will employ many advance insertion devices, a Hamiltonian for pure
elliptic case has been  derived by B. Singh  et al.[3]  from first principles. The planar and
helical are the limiting cases of it. A Hamiltonian for helical case can be obtained from it
under condition  Bo =  B� o.  Both of them  contain the same polynoms in x,y except their
coefficients which are different. Therefore, the nature of   beam dynamics is same in two
cases. A Hamiltonian for helical case in which the hyperbolic functions are expanded up
to fourth power in x, and y,  is written here due to simple algebra for understanding of
beam dynamics.

H = (px
2+py

2)/2 + {(kx
2+k � x

2)x2 + (ky
2
 + k� y

2)y2 +  (kx
4/3+k � x

4/3)x4 + (ky
4/3 + k� y

4/3)y4 +

     k2(kx
2 + k � y

2)x2y2 }/(4k2� 2)- cos(kz)sin(kz)/(k2� 2) {(k � y
2 + kx

2)xy + (k2k� y
2/2 + k � y

4/6 + 

     kx
2ky

2/6)xy3 + (k2kx
2/2 + k� x

2k� y
2/6 + kx

4/6)x3y } - px { sin(kz)/( � k)[ky
2y2/2 + kx

2x2/2 +
   
     ky

4y4/24 + kx
4x4/24 + kx

2ky
2x2y2/4 ] - cos(kz)/( � k) [ k� y

2xy + k� y
4xy3/6 + k � x

2k� y
2x3y/6 ]} 

     
    -  py {cos(kz)/( � k )[ k � y

2y2/2 + k � x
2x2/2 + k� y

4y4/24 + k� x
4x4/24 + k � x

2k� y
2x2y2/4]  -

     
     sin(kz)/( � k) [kx

2xy + kx
2ky

2xy3/6 + kx
4x3y/6]} (2.2.1)

Where : �  is the radius of curvature corresponding to B0  and is given by;
�   = 3.3356 E0(GeV)/B0(T)  : E0 : design energy of machine 

The equations of motion  governing the betatron oscillations can be derived from above
Hamiltonian using Hamilton’s  equations.  But  the features of  beam dynamics can be
understood  from  Hamiltonian itself. The H contains the non-oscillating and oscillating
terms (cos(kz), sin(kz) and cos(kz)sin(kz)). 

Non-oscillating Terms :

i. The linear terms  introduce the  quadrupole-like effects or focusing in x,y. The focusing
strengths or quadrupole gradients ( Kx, Ky ) are given by;

Kx =    (kx
2 + k� x

2)/2k2� 2  , Ky =    (ky
2 + k� y

2)/(2k2� 2) (2.2.2)

Therefore, an ID act as a pseudo quadrupole which has different gradients in x, y than
usual one.  

ii. The non-linear terms introduce the systematic octupole-like non-linearities. Therefore,
IDs   produce  amplitude-dependent  tune-shifts  and  excite  the  following  4th  order
resonances;

4Qx = M , 4Qy = M , 2Qx  2Qy = M     ( M : integer )

Oscillating Terms :
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i. The  oscillating  terms  contain  the  normal  and  skew  sextupole,  octupole-like  non-
linearities  and  are  equal  to  zero  if  averaged  over  a  period  length  of  the  device.
Therefore,  their average effects may be negligible.

ii. The amplitudes of oscillations  of sextupole-like fields averaged over a half period of
the device are very large. They are comparable to that of the chromaticity correcting
sextupoles of the  ring and therefore, their effects are not negligible. They can excite
intrinsic  odd order sextupole resonances. 

iii. This amplitude of oscillations of octupole-like fields is small and therefore its average
effects are small and can be ignored.

A Hamiltonian for traditional planar IDs (L.  Smith) in which electrons entering on axis
and wiggle in a  horizontal plane, can be  obtained by setting k � x , k� y and all cosine terms
to zero in (2.1.2).

H = ( px
2 + py

2 )/2  + ( Kxx2 + Kyy2 )/2 + [ kx
4x4 + ky

4y4 + 3kx
2k2x2y2 ]/(12k2� 2 )

- sin(kz) [px ( kx
2x2 + ky

2y2 ) - 2kx
2pyxy]/(2k� ) (2.2.3)

Where : Kx  and Ky  are the linear focusing functions and are given as;

   Kx = kx
2/ (2k2� 2)   , Ky = ky

2/ (2k2� 2)

The oscillating octupole-like fields terms have been omitted. In case the coupling kx is
small, the focusing occurs in vertical plane only. It excites  4th order resonance 4Qy =
integer.
Therefore, IDs produce linear and non-linear effects on an motion of an electron when
installed in the storage ring. The linear effects produce linear tune-shifts and distort the � -
functions of the machine (� -asymmetries or beta-beating ). The change in linear tunes can
bring  machine  operation  in  near  resonance.  While  � -distortions  break  the  strong
symmetry of chromaticity correcting sextupoles  distributed over  the machine.   Hence
excite  the additional  systematic  resonances.   These effects  shrink  further the already
limited  dynamic  aperture  of  the  ring.  The  non-linear  effects  produce  the  amplitude-
dependent tune-shifts and excite its own additional resonances or bring operation near
other resonances due to amplitude-dependent tune-shifts. These effects can be quantified
by estimating linear  tune-shifts,  � -distortions  or  � -asymmetries,  non-linear  amplitude-
dependent tune-shifts, distortions of  phase spaces and dynamic aperture. The excitations
of additional resonances can be identified from  phase space plots or FFT of numerical
trackings of a particle.

2.3 Linear Tune-Shifts and � -asymmetries : 

The expressions for linear tune-shifts and � -asymmetries  up to first order can be derived
by considering quadrupole-like effects as gradient errors and are given as;
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� Qx,y  =  1/4 �  �  � x,y Kx,y ds

  =  (1/(8� k2� 2)) �   � x,y (kx,y 2+ k� x,y
2) ds

�  (1/(8 � k2� 2)) ( � x,y)av L Kx,y= ( � x,y)av  B0
2
 L Kx,y /((3.3356E0 )2 .8� k2)

Where : (� x,y)av is the average  � -functions of the machine at the location of ID averaged
over its length L.
The relative � -asymmetries at the location  j of the machine  are given by;

(� � x,y/ � x,y)J  =  1/(2sin(2� Qx,y)) �  � x,y(w) cos[2Qx,y (� - � � x,y(w) - � x,y(j) � )Kx,y dw

� � Qx,y

Where : w is the location of device.
The linear tune-shifts and  � -asymmetries are proportional  to  average  � -functions and
(B0/E0)2. Therefore, these effects will be more prominent for high field devices and in low
energy machines.  In order to minimize the linear distortions, they are to be installed in
the location of  low  � -functions of the machine. The third generation storage rings are
designed  to  provide  dispersion  free  straight  sections  with   low  � -functions  for
installations of  IDs. 

2.4   Amplitude-Dependent Tune-Shifts and Non-Linear Resonances :

The non-linear terms in the  Hamiltonian are responsible for non-linear effects and are
proportional to k2/ � 2  or  (B0/(E� ))2.  Since the undulators have low  � .,   the non-linear
effects are more prominent in undulators than wigglers. Also, the high field undulators
break the strong symmetry of sextupoles due to linear effects. The average H contain the
octupole-like and prominent oscillating sextupole-like non-linear fields and produce the
amplitude-dependent  tune-shifts.  The  amplitude-dependent  tune-shifts  can  be  derived
using  first  and  second  order  perturbation  theories  for  octupoles  and  sextupoles
respectively. Both of them are proportional to square of amplitude. These are measure of
severity  of   non-linear  effects  introduced  in  the  machine.  In  practice,  they  can  be
calculated from the numerical trackings.
The octupoles excite the 4th order  non-linear resonances predicted from the first order
perturbation theory. 

4Qx = M ;   4Qy = M   ;    2Qx + 2Qy = M  ;  2Qx - 2Qy = M      ( M : integer )

In case of SLS, the excitations for 4th order resonances 4Qx = 83 and 4Qy = 33 have been
visualised  by EEW in double undulator mode (2xUE212) in absence of sextupoles. The
phase space plots have been obtained from numerical trackings after shifting linear tunes
near to the resonances (fig.1 and fig.2). These plots show the four islands or occurrence
of  4th order resonances.
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The  sextupoles  excite  the odd order resonances. It will be discussed later  in this report
that the effects of the oscillating sextupole-like fields is cancelled out if matched end
poles are taken into account. 
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3. Simulation Models :

The influences of IDs on beam dynamics of storage rings are studied using numerical
simulations. The various simulation models have been developed at different laboratories.
These tools are available in standard optics computer codes BETA and RACETRACK
used for design of storage rings. It is important to know these models in order to obtain
the required input parameters as well as for understanding of beam dynamics. The two
models used for simulations studies of APPLE II/Sasaki-type and EEW or planar devices,
are described here briefly. 

3.1 Simulation Model for APPLE-II or SASAKI-type Elliptic Undulator :

It has been developed at BESSY-II  by G. Wüestefeld et al.[4]  for simulations studies of
Sasaki-type or   APPLE-II device.  It  is  installed  to  provide  the  photon  beams of any
polarization from circular to linear in both horizontal and vertical planes. It is operated in
double undulator  mode, in which two halfs of  one device is used to generate photon
beams of different polarization separated by each other.
The  undulator  is  consist  of  4  long parallel  beams  of  alternating  rows  of  permanent
magnets. A variable gap between the upper and the lower rows produces the different
magnetic fields on the axis of device. The upper left and the lower right rows can be
shifted with respect  to  other  two rows.   This  phase  shift  results  in  magnetic field  of
arbitrary ellipticity.  The scalar potential V of periodic part of the field is obtained by
superposition of the contributions of four rows. 

V = b0 (V1 + V2 + V3 + V4)/8 ,    with 
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and     cx  = cos(kx (xx0)),     sz  = sin(kz  � /2).

The other parameters are defined as;
� x = 2� /kx  ,  � y = 2� /ky   ,   �  = 2� /k    , ky

2 - kx
2 = k2

( �  is the longitudinal period length of an insertion device )

It is to be noted that kx  is  different from previously defined (kx =  ikx (previous kx)).

b0 :   field strength parameter  
x0 :  horizontal gap separation
� : shift parameter and is the measure of  shift of the two rows with respect to other  two.

The magnetic fields on the axis  can be varied by changing the shift parameter �  from 0
to 2� . The fields on axis can be obtained from above scalar potential and  given as; 

By (x = 0, y = 0, z) = -b0 (1 + cos(kxx0)) cos( � /2) sin(kz)

Bx (x =  0, y = 0, z) = -b0 kx sin(kxx0)sin( � /2) cos(kz)/(2ky)

The different fields are produced on the axis of device depending upon the value of � .  It
acts as horizontal and vertical planar device for �  = 0 and �  respectively.

  �   = 0 ,  Bx = 0  -----   plane device ---   horizontal -wiggle 
                                        

  �  = �  ,   By = 0  ----    plane device ---   vertical -wiggle 

In case of UE56 device  of SLS, the maximum fields on the axis  ( x0 = 0.02m,  �  =
0.056m and b0 =1.3 T ) are as follows ;
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    By0 = 0.76 T   , Bx0 = 0.34 T

This tracking routine needs b0(T),  � x (m), s � (s�  = � /2 � ), E0(GeV) and its length(m) as
input parameters. The end poles are defined separately on either side of the device and
treated as separate IDs. They are integrated by step generating function. This model is
incorporated for numerical simulations  in optics code BETA  (BESSY version). Since
the end poles are treated separately, it can be used to understand the importance of end
poles on a motion of an electron in a storage ring.

3.2 Simulation Model for Elliptic Electromagnetic and Planar
Undulators :

The various simulation models are available in computer code RACETRACK for elliptic
device based on definitions of various field distributions. The realistic field distribution
can not be represented accurately by hyperbolic functions because of unusual geometry of
real  poles.  Therefore,  another  model  was developed by L. Tosi  et  al.[5] in  which the
transverse field distributions are expressed in form of polynomials of  sixth order. This
model  was used  for  simulations  studies  of elliptic  electromagnetic  wiggler (EEW) at
ELETTRA. In this model,  the suitable field distribution is  obtained using polynomial
expansions for the off axis variation in the following form:





)cos(),(

)sin(),(

kzyxg
v

B
v

kzyxf
h

B
h





with

f(x,y) = x+a2hx3+b2hy2x+a3hx5+b3hy2x3+c3hy4x+a4hx7+b4hy2x5+c4hy4x3+d4hy6x

g(x,y) = y+a2vy3+b2vx2y+a3vy5+b3vx2y3+c3vx4y+a4vy7+b4vx2y5+c4vx4y3+d4vx6y

Where :  � h , � v are the scalar potentials corresponding to the horizontal and vertical poles
respectively. An elliptic device can be considered as a device made of two horizontal and
vertical planar devices and corresponding transverse field components can be obtained in
followings way;

By (x,0,s)   =   - � � v /� y  =   �  Bvn ( 1 + b2v x2 + c3v x4 + d4v x6) cos(kz)

 Bx (0,y,s)   =   - �� h /� x  =  �  Bhn ( 1 + b2h y2 + c3h y4+ d4h y6) sin(kz)
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The two sets  of  coefficients  (  b2v,c3v,d4v ),  (  b2h,c3h,d4h )   are  obtained  by fitting  the
expressions to Fourier-analyzed computed field distributions. and other coefficients are
calculated from Maxwell’s equation.

div B = 0

In  case  of  planar  device,  only  one  set  of  coefficients  b2,c3,d4 is  required.  The  field
distribution in case of horizontal planar device (vertical poles) is given as;

Bx = Bo (2b2 xy + 2b3  xy3 + 4c3 x3y + 6d4x5y + 4c4 x3y3 + 2b4 xy5) cos(kz) 

By  = Bo(1 + 3a2 y2 + b2 x2 + 5a3 y4 + 3b3 x2y2 + c3 x4 + 7a4 y6 + 3b4 x4y2 + 3c4 x4y2 

+ d4 x6) cos(kz) 

Bz  = -kB0( y + a2 y3 + b2 x2y + a3y5 + b3x2y3 + c3x4y + a4y7 + b4x2y5 + c4x4y3 

+d4x6y) sin(kz) 

Here suffix v  omitted.

In the median plane (y = 0) and at cos(kz) = 1, only vertical field By  exists.

By = B0 ( 1 + b2 x2 + c3 x4 + d4 x6)

The coefficients b2,c3,d4 are obtained from the field data calculated from simulation code
or from measured field data by polynomial fit. In case of elliptic electromagnetic device,
the  two sets  of  these  coefficients  are  obtained for  field  distribution corresponding to
horizontal  and  vertical  planar  devices.  This  model   is  implemented  for  numerical
simulations  in  computer  code RACETRACK. It requires b2,c3,d4  and B0,  B� 0 as input
parameters. This model has been used to simulate the effects of 2xUE212  and all planar
devices for SLS .

4. End Poles : 

In order to obtain the stable electron motion in a storage ring in presence of ID, it  is
essential to have matched end poles on either sides of the device. The end poles match the
closed orbit from the outside of the orbit to a wiggling periodic orbit inside a device and
back  to  outside.  In  ideal  condition,  it  is  achieved  without  any  residual  kick  or
displacement of the beam. This is achieved when two field integrals of  both transverse
field components By and Bx are zero or:

0'0
,2,1

  dzdzBIanddzBI
yx

z
L

L
Lyx

L
L

 

 Fields  have 10  and 14  poles -like  multipoles which do not appear in Hamiltonian. If hyperbolic
functions  are expanded up to 7th power in x, y,  these terms will appear. 
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It can be achieved by pure dipole fields without any higher order field components. But in
practice, is achieved by  real  poles. It is described  in a paper by G. Wüestefeld et al.[4]

that  the  effects  of  oscillating  sextupole-like  fields  can  be  cancelled  out  by properly
choosing the end pole configurations in addition to matching of closed orbit. It requires
that the betatron phase advances should be small  and � -functions are constant over the
ID. The magnetic fields of an elliptic device contains both cos(kz) and sin(kz) terms. The
cos(kz)-like terms  is naturally matched for both closed orbit and as well as for sextupoles
however sin(kz) -like term requires a special end poles at least. 

4.1   Treatment of End Poles  in  Simulation Codes :

The proper treatment of end poles in numerical simulation models is very important for
realistic estimations of  their effects. In initial numerical simulations models of computer
code RACETRACK, it  is  done by shifting the co-ordinates of the particle   from the
reference orbit of the machine to a periodic wiggling orbit of an ID at entry and back at
the exit. It is done by shifting the co-ordinates of the particle at entry  and exit by an
amount:

� x = 1/(k2� 2) ,  � x �  = 0 , � y = 0, � y�  = - 1/(k �� )

where :  �   & ��  are the radius of curvatures corresponding to fields B0 and B� 0. 
This treatment is equivalent to consider the end poles as dipoles. After findings of G.
Wüestefeld,  the  numerical  tracking  routines   were  modified.  The  two  codes
(RACETRACK  and  BETA)  have  adopted  different  approaches.  RACETRACK  has
adopted the approach of the continuity of conjugate momentum by adjusting the slope
properly. While  BETA code has included an end pole  configuration on either side of
device  and  consist  of  two  poles  of  reduced  field  amplitudes.  These  end  poles   are
integrated by a step generating function over a half period length. The matched end poles
configuration which is included  in  computer code BETA , are defined as;

End pole configuration ( half poles of different amplitudes )
    1st    2nd 
1/4           -3/4 ---   entry 
3/4  -1/4  ----   exit 

These poles have been treated as separate IDs.
In case of planar ID, the fields contain only cos(kz) terms and therefore, it is naturally
matched for both the closed orbit as well as sextupoles of the  ID. So, it does not require
to have special end poles. 
BETA code  can be used to understand the influences of end poles on beam dynamics. In
order to understand it, the numerical tracking simulations have been done with different
initial particle co-ordinates in presence and absence of chromaticity correcting sextupoles
with and without end poles for the low  emittance SLS optics mode (Qx = 20.82, Qy =
8.28)  with  APPLE-II  device  in  double  undulator  mode  (2xUE56).  The  following
conclusions are drawn from tracking results presented in fig.3, fig.4 and fig.5.

a. There will not be a stable motion in presence of chromaticity correcting sextupoles if
ID has no end poles in both planes (x, y) due to severe coupling as is seen in fig.3 and
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fig4. The horizontal motion with (x, x � ) = ( 15 mm, 0 mrad), it fills whole phase space
and get lost while vertical motion with (y, yi� ) = (3mm, 0 mrad) blows up fast.

b. The particle with co-ordinates (x, x � , y, y� ) = (16 mm , 0 mrad, 16 mm, 0 mrad) is
simulated with and without end poles in absence of sextupoles  for 1000 turns and
presented  in  fig.5.  The  solid  lines  and  dots  are  for  with  and  without  end  poles
respectively. In case of ID with end poles, it is perfect circle while good degree of
coupling is noticed in case without end poles. It occurs due to the effects of oscillating
sextupole-like fields  of  the ID. Therefore, the non-linear effects of an ID  are reduced
significantly if end poles are included properly in numerical simulation model.

c. It is to be noted that the chromaticity correcting sextupoles of the machine make the
electron motion unstable in absence of end poles. 
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5. Field Errors :
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The above  descriptions of IDs are based on  ideal field models. In practice however the
magnetic  field  errors  arise  due  to  the  variations  in  the  shape  and dimensions  of  the
magnets, poles and variations in gaps and magnetisation strength and angle from block to
block and inhomogeneity. These errors will further perturb the motion of  an electron
beam. Ideally, the first and second integrals must be zero but in reality these integrals are
not zero. The non-zero values of these integrals along the optical axis will give rise to non
zero closed orbit   and variations with transverse co-ordinates  These integrals can be
expressed in terms of multipole components which produce the change in linear tune
values  and  betatron  functions  (normal  quadrupole  errors),  change in  coupling (skew-
quadrupole errors)and as well as non-linear effects (sextupole and octupole errors etc).
The effects of various field errors have been observed in various storage rings[6].  The
effects of field errors on beam dynamics of SLS  have been studied separately  to set the
tolerances for field errors of  IDs[7].

6. Brief of Effects of Insertion Devices on Beam dynamics :

The perturbations produced by IDs  can be summarised as below; 
The IDs produce the linear and non-linear perturbations on  the beam dynamics of storage
ring.

 Linear Effects:

i. Proportional to (B0/E)2 and � -functions of the machine.
ii. Produced by the wigglers  due to their high field or high field undulators.
iii. They are  severe in low energy storage rings and if installed at high �  locations of the

ring.
iv. Produce the linear tune-shifts and modulation of � -functions ( � -asymmetries)  around

the rings.
v. � -asymmetries cause the change in beam sizes and if large, can affect the beam life

time and users of synchrotron radiation. 
vi. Reduce  the  dynamic  aperture  of  the  ring  due  to  the  break  of  high  symmetry  of

sextupoles distributed over  the ring and can excite additional sextupole resonances or
can bring machine operation  near to the other sensitive resonances of the ring.

It  may  be  essential  to  compensate  linear  tune-shifts  and  � -asymmetries  for  smooth
operation of machine globally, locally or both.

Non-Linear Effects :

i. Proportional to (B0/E � )2  and � -functions of the machine. 
ii. Produced mainly by undulators due to their low period length ( �  ).
iii. They are severe in low energy rings for high field undulators with low period length 
and located in high �  regions.
iv. Introduces its own non-linearities that can excite additional resonances and produce

the amplitude-dependent tune-shifts.. Thus can limit the dynamic aperture further.
v. Excite the 4th order regular resonances 4Qx = M , 4Qy = M  and   2Qx  2Qy = M  ( M : integer ) 

14



vi. The regular odd order sextupole resonances (3Qx = M ;   3Qy = M ; Qx + 2Qy = M ; Qx - 2Qy =
M ;  Qy + 2Qx = M ; Qy - 2Qx = M.) can also be excited by strong oscillating sextupole-like
fields if conditions of matching failed. 

7. Numerical Simulations Studies  for SLS :

It is  planned to operate two elliptic and three planar device in SLS.  An Apple-II or
Sasaki-type  (UE56)   and  a  elliptic  electromagnetic  wiggler  (UE212)  will  operate  in
double undulator mode and located in  a medium (11 M ) and  a  long (9L) straight
sections respectively. The Planar devices a wiggler (W61) and two in-vacuum undulators
(U24, U17) will be installed in short straight sections  4S and 6S respectively. The U24
will be replaced by U17 later. The parameters of these devices[8] are listed in table.1.

Table.1

ID Total
length
  ( m )

No. of
periods
  (Np)

Period
Length
(mm)

    By

   ( T )
   Bx

  ( T )
   Gap
  (mm )

Type

 UE212    10  2 x 21    212    0,45     0,1    19  EMAG

 UE56     6  2 x 33     56    0.83     0.6    16 Apple-
II/Sasaki-

type
  U24     2    80     24     1.0        6 Hybrid

  U17     2   110     17       1     4 Hybrid

  W61     2    33      61       2    7.5 Hybrid

Non-Linear Beam Dynamics with sextupole :

 Some features of non-linear beam dynamics of  SLS for low emittance  optics mode ( Qx

= 20.82 and Qy  = 8.28 ) with chromaticity correcting sextupoles as well as some other
noticed during numerical investigations  are mentioned below. 

i.  The horizontal phase space plot ( fig.6 ) shows  no appearance of  any  resonance either
     stable or unstable up to border of stability.
i. The vertical phase space plot ( fig.7 ) shows  the occurrence of the coupling only at the

border of stability ( y = 6 mm and  7 mm).
ii. The vertical dynamic aperture is  sensitive to a small increase in a vertical tune Qy

(fig.8).  It  falls  from 7  mm to  4  mm when it  is  moved  from Qy =  8.28  to  8.29.
Therefore, dynamic aperture is calculated for IDs with compensation of linear tunes to
avoid it due to their linear effects.

iii. It is safe to calculate the dynamic aperture from bounded to unbounded region as there
is  unstable  region  between  stable  regions  (fig.9).  This  has  been  noticed  during
numerical investigations for 2xUE212 undulators of SLS. Similar features have been
noticed in SUPER-ACO[6]. The islands lie in this region  are unstable. The particles in
this region are lost in different number of turns and therefore horizontal DA changes
with number of turns (fig.10).
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7.1 APPLE II/Sasaki-type undulators  (2xUE56)  :

This device consists of twin-undulators (double undualtor mode ). Each of them are used
to produce different. polarized photon beams. The electron beam is displaced parallel by
1 mm in two undulators using small  dipole magnets to  separate radiation from them.
They can be tuned to obtain any degree of polarization from linear to circular in both
horizontal and vertical. Its influences on the beam dynamics has been investigated using
simulation model developed at BESSY-II  and implemented in BETA Code. The general
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parameters of this device are listed in the table1. Other parameters required for numerical
simulations are;

b0 (remanant magnetic field) = 1.3 T ,  � = 2� /k  = 56 mm , � x = 2� /kx = 89.6 mm, 
� y = 2� /ky = 47.5 mm, x0 = 20 mm,   Np ( number of periods ) = 33 , s �  = 0 to 1

Linear Distortions :
The linear tune-shifts and  � -asymmetries are produced due to fields on the optical axis
and are proportional to square of it. A variable gap between the upper and the lower rows
produces the different fields on axis. The maximum on axis fields ( both horizontal Bx =
0.34 T (s �  = 0.0) and vertical By = 0.76 T (s �  = 0.5) ) are produced when these undulators
operate as planar device. Therefore, the  maximum linear distortions are produced when
these undulators are operated in planar modes.
The linear tune-shifts are estimated from tracking as there is no provision in code to treat
this device as a linear element. These are estimated from tracking of a particle with a
small  initial  amplitude  and  � -asymmetries  from  the  fact  that  these  are  directly
proportional to linear tune-shifts.

Linear tune-shifts : 
� Qx = 0.0027   for   s�  = 0.5    -----  vertical planar device
� Qy = 0.0045    for   s�  = 0.0   -----   horizontal planar device

� -asymmetries  =  ( � � x,y/� x,y)max   <  4 %

The maximum  � -asymmetries occur in vertical plane and  are less than 4% when both
undulators  operate as horizontal planar device. The symmetry loss is insignificant. Also,
This mode produces maximum vertical linear tune-shift. It has been already mentioned
that the dynamic aperture (for sextupoles) is sensitive to a small increase in vertical tune.
The dynamic  aperture  gets  affected most  in  this  case if  linear  increase  in  Qy  is  not
corrected. 
The linear tune-shifts are calculated first and then are corrected using quadrupole families
QLF and QLG. Afterwards, the dynamics aperture is calculated (fig.17) which shows that
it  recovers back. 

Non-Linear Effects :

The non-linear  effects  are  estimated  by the  amplitude-dependent  tune-shifts  and   the
deformations  of  circular  trajectories  in  the  normalized   phase  space.  They  are  also
proportional  to  square  of  on   axis  fields.  Therefore,  they  are  maximum when both
undulators operate in planar ( horizontal or vertical ) modes. In order to quantify them,
the amplitude-dependent tune-shifts are calculated from the trackings  of  a particle for
planar  modes  (fig.11  and  fig.12)  due  to  device  only  (no  sextupoles).  These   are
insignificant and are less than 10-3 in the region of interest for SLS. 

  The  parameters required for numerical simulations of  different devices have been provided by ID group
     ( G.Ingold & T.Schimdt) at SLS.
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Also, the phase space plots have been obtained from trackings for a case  s�  = 0.15 for
both undulators  with device only (fig.13 and  fig.14 ). They do not show any noticeable
deformations of  circular trajectories in this region. No noticeable difference is observed
between   phase  spaces  of  sextupoles  only  (fig.6,  fig.7)  and  sextupoles  with  device
(fig.15, fig.16). 
Therefore, it can be concluded that  device produces a very weak non-linear effects.  
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  The region of interest is defined as dynamic aperture determined by the machine sextupoles only ( x=19
mm, y=7 mm for SLS).
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Dynamic Aperture:

To investigate the effects of this device on the dynamic aperture, one need to calculate it
for entire range of shift parameter �  ( 0 to 2 �  or s �  = 0 to 1) with at least compensation
of   increase in  linear  vertical  tune  Qy  .  It  is  already discussed  that  vertical  dynamic
aperture recovers after correction of vertical linear tune. The dynamic apertures have been
calculated for  � p/p = 0%  with various  s �  (same for both undulators) and   different
values of  s �  for two undulators without compensations of linear tunes (fig.18 and fig.19)
. It can be  seen from these figures that there is no significant change  in horizontal while
some reduction in vertical is noticed.  It is due to increase in linear Qy which recovers
after correction. 
Therefore,  the effects of this device on the  dynamic aperture of the ring can be ignored
for entire range of shift parameter provided vertical linear tune-shift (linear effects) is
compensated globally.
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Effects of Beam Displacement on Dynamic Aperture:

The electron beam is displaced parallel in horizontal plane inside  two undulators using
short dipole magnets (chicane magnets). To study the effect of beam displacement on the
dynamic aperture, the parallel orbit bump is produced using  kicker magnets located at the
middle of these dipoles. No effect is observed on dynamic aperture even when orbit bump
is  4 mm (fig.20).  It is  expected result. If beam is displace by 4 mm from orbit or axis of
device inside undulators, it means beam will see higher non linear fields. But  non-linear
effects of device are very weak in horizontal plane for large amplitudes. Therefore, it does
not affect the stability of particle and hence dynamic aperture.

Effects of Multipoles of Chicane  Magnets on Dynamic Aperture:

Two types of dipole magnets are used for chicane  and their multipole components are
different . The magnets to be installed at entry and exit (side) are of one type and at the
middle are other type. The skew multipoles are insignificant and therefore, they have been
ignored. The integrated strength of a normal multipole is defined as;

bnl = (dn-1By/dxn-1).l /((n-1)B� ) 

Where 2n is the number of poles and l is the length. The multipoles are given in table.2.

Table.2
Middle magnets         side magnets

      2n    bn.l    bn.l

2   4.67 10-3  -5.93 10-3

4 2.10 10-10 - 4.60 10-4

    

6 6.45 10-2 - 0.3085
8 4.57 10-6 - 7.40 10-4

  Data for multipoles of chicane magnets have been  provided by T. Schimidt of ID group at SLS.
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          10           - 7.87  18.80
          12 3.96 10-3 - 6.48 10-5

          14 5.66 103    3.28 103

          16 6.68 10-1 - 2.94  10-2

          18          -17.67 105 - 5.76 105

The dynamic aperture is  calculated in presence of these multipoles (fig.21) with orbit
bump of 1 mm. The multipoles have no effect on dynamic aperture. It is noted during
simulation studies that sextupole component of side magnet is significant and its effects
are cancelled out due to opposite polarities. In case polarities are same, the horizontal
dynamic aperture falls by 40% due to excitation of 5th order resonance 5Qx = 104.
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Fig.20 Dynamic aperture with and without orbit bump       Fig.21 Dynamic aperture with and without multipoles 

           (orbit bump = 4 mm )                  of  dipole magnets of chicane     

Dynamic Aperture for Off Momentum Particles :

The effect of  this device on off- momentum particles is negligible even when  linear
tune-shifts are not compensated. The dynamic apertures for  � p/p = -4 % and +4% are
shown in fig.22 and fig.23  respectively.
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tunes compensation

It is  concluded that 2xUE56 produces  weak linear  and insignificant non linear effects.
The  maximum  � -asymmetries  are  less  than  4%  and  maximum  linear  tune  shift  is
produced in vertical plane and is less than 0.005. Some reduction in vertical dynamic
aperture is observed and it is due to increase in a vertical linear tune due to its linear
effects.  It  recovers  back  after  increase  in  linear  Qy is  compensated  globally  using
quadrupole families QLF and QLG. No effect of beam displacement and multipoles of
chicane magnets is noticed on dynamic aperture. Therefore,  this device will not have any
significant effect on the dynamic aperture for entire range of shift parameter( � ).

7.2 Elliptic Electromagnetic Undulators  (2xUE212) :

This  device  consists  of  twin electromagnetic elliptic  undulators  (2xUE212) with 21
periods  of  212  mm  length  each.  The  twin-undulators  can  be  operated  either  in  the
opposite or same helicity mode. The electron beam is displaced parallel by 1 mm  same as
in case of APPLE-II device with identical chicane magnets. The simulation model based
on polynomial field descriptions of  RACETRACK has been used to study its effects. 

The parameters of  this device required for simulations are as follows;

B0 = 0.5 T ,   b2 = - 4.5 102 [ m-2 ] ,  c3 = 3.38 104 [m-4]  , d4 = 1.01 106 [m-6]
------- ( vertical poles)

B� 0 = 0.08 T , b� 2 = 2.46 102 [m-2] , c� 3  = 1.01 104 [m-4]  ,  d� 4 = 1.66 106 [m-6]
------- ( horizontal poles)

Np = 21 , �  = 212 mm 
Linear distortions: 
The linear tune-shifts and � -asymmetries are estimated by treating it as a linear device. 
Linear tune-shifts  :
� Qx =  -0.0091 ,   � Qy =  0.0166
� -asymmetries :
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The  � -asymmetries are calculated around the ring with and without corrections of the
linear tune-shifts  (fig.24 and fig.25). The linear tune-shifts  are compensated  globally
using quadrupole families QLF and QLG.  

� -asymmetries   <     4% without compensation of linear tune-shifts 
   <    6% with compensation of linear tune-shifts

   (except at middle of device )

The  following are conclusions of linear perturbations;
i.    � -asymmetries are nominal (small).
ii.  � -asymmetries are more in case linear tune-shifts are compensated.
iii.   The linear tune-shifts are small but not insignificant.
iv.  The vertical  linear tune Qy  is  increased.  It reduces   the vertical  dynamic aperture

significantly  but recovers after its compensation ( already discussed) .

Non-linear effects : 

The amplitude-dependent  tune-shifts  have  been calculated  from trackings  (fig.34)  for
device only (no sextupoles).  These tune-shifts  are less than 0.001 in both planes in a
region of interest for SLS. Therefore, non-linear effects are very weak and should not
make any significant effect on beam dynamics.
The  amplitude-dependent  tunes  calculated  in  presence  of  device  and  sextupoles  are
shown in fig.26 and fig.27.

Dynamic Aperture :

The dynamic apertures ( � p/p = 0%) have been calculated for both linear and non-linear
devices after compensation of linear tune-shifts globally using quadrupole families QLF
and QLG (fig.28). There is no significant reduction in dynamic aperture in vertical while
it has reduced significantly in horizontal ( 19 mm to 10 mm for non-linear and 10 mm to
9 mm for linear).  There is almost no  difference between linear and non-linear cases.
Therefore, this reduction in horizontal occurs due to loss of symmetry of the ring or  � -
asymmetries. 
In order to investigate the reasons, the normalized horizontal phase space plots have been
obtained from trackings (fig.30 and fig.31) for linear and non-linear devices. The five
islands appear in phase space plots at border of stability. This implies that the 5th order
resonance  5Qx =104 is excited.  This resonance is unstable because particles on it  are
lost after certain number of turns. The horizontal amplitude-dependent tunes have been
calculated from trackings for both linear and non-linear cases (fig.32).  The horizontal
fractional tune Qx reduces from 0.82 to 0.80 due to amplitude dependence in both cases.
Therefore, it reduces due to sextupoles  and not because of non-linear fields of device.
This  change  in  horizontal  amplitude-dependent  tune  occurs  due  to  change  in  the  � -
functions at  the locations of sextupoles and betatron phases between them due to  � -
asymmetries produced by a device. Therefore, this resonance is excited by a chromaticity
correcting sextupoles. The 5th order resonances can be  excited  by the sextupoles which is
predicted by third order perturbation theory[9].
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Further,   these tracking studies show that  the five unstable islands lie between stable
trajectories in phase space. The unstable region lies between  stable regions. This type of
behaviour with IDs was noticed in SUPERACO[6]  also. 

Effects of Opposite Helicity mode on Dynamic Aperture:

The twin undulators will  be operated  in opposite helicity mode also. This means the
horizontal magnetic fields in two undulators will be in opposite directions. To investigate
the effects of opposite fields, the dynamic apertures have been calculated with opposite
horizontal  fields (Bx =  ).  Theoretically, there should not  be any change in nature of
dynamics in case two undulators have opposite fields because all linear as well as non-
linear  effects  are  proportional  to  square  of  magnetic  fields.  The  linear  tune-shifts
calculated are the same. Also, There is  no difference in  dynamic apertures calculated for
two cases (fig.29).

 Effect of Beam Displacement  and Multipoles of Chicane Magnets :

This device produces a very weak non-linear effects similar to 2xUE56. Therefore, the
displacement of beam in two undulators does not have any effect on dynamic aperture.
The multipoles are the same as in case of 2xUE56. Also, they have no effect on dynamic
aperture (fig.33).

It is concluded that though  � -asymmetries are nominal (small and lie within numerical
and measurements accuracies) but produces the strong horizontal amplitude-dependent
tune-shift.  Thus  reduces the  horizontal  dynamic aperture  significantly.  Therefore,  the
following observations are made;

i. Tunes compensation should be  done in a better way.
ii.  Machine operating point Qy = 8.28  is probably not good.
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with sextupoles + non-linear  2xUE212 + linear tunes resonance 5Qx = 104 with
sextupoles + 
compensation. linear 2xUE212 + linear  tunes 

compensation.
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7.3  Wiggler (W61) :

The wiggler W61 is a high field horizontal planar device. It will be installed in 4m long
short straight section 4S where  � -functions of machine are low ( � x = 1.14m, � y = 1.6 m at
middle of straight section) in order to minimize its influences on the beam dynamics. The
simulation routine available in computer program RACETRACK based on polynomial
field descriptions has been used. The parameters required for simulations are;

B0 = 2.05 T , b2 = -1.069 102 [m-2] ,     c3 = 1.45 106 [m-4]  ,         d4 = - 6.7 109 [m-6]
------ (Vertical Poles)

Np = 33 ,           �  = 61 mm 

Linear Distortions :
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� -asymmetries and Linear Tune-shifts :
The linear tune-shift and  � -asymmetries  in horizontal plane are negligible. This device
produces perturbations in vertical plane only. The � -asymmetries (fig.35) are nominal (<
5%). Therefore, it is not required to correct the  � -asymmetries locally or globally. The
vertical linear tune-shift is also small and is equal to 0.01. 

Non-linear Effects :

To estimate the influences of non-linear fields, the vertical amplitude-dependent tune-
shift (fig.42) has been  calculated with device only (no sextupoles). Also, the both tune-
shifts have been calculated with device in presence of sextupoles (fig.36 and fig.37).  The
horizontal  tune-shift  is nearly zero  and  vertical  is   small   in region of our interest.
Therefore, non-linear effects of this device are small and should not have severe effects
on the dynamic aperture. 

Dynamic Aperture :

The dynamic apertures have been calculated considering W61 as linear and non-linear
devices with linear tunes compensation (fig.36). There is  no significant reduction  in it as
a  whole.  It  remains  same in  x  while  it  is  reduced by 1 mm in  y. Also,  there  is  no
significant difference in two cases. It means that non-linear fields do not have any severe
effects   on dynamic aperture. 
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The above parameters of device show that  kx is nearly zero. In order to investigate its
effects when coupling is not zero.  Further, studies have been carried out using simulation
routine of RACETRACK for planar device based on ideal field descriptions for a planar
device.

( kx/ky)2 = -0.5
Linear tune shifts :
� Qx = 0.008  ,  �  Qy = 0.018

� -asymmetries  :
The  � -asymmetries (fig.38) in vertical  plane are increased to nearly 10 % but has no
major  effect  on dynamic aperture (fig.39)  which can be estimated from difference of
linear and non-linear cases. The dynamic aperture has reduced by 3 mm and 1 mm in x
and y respectively. 
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Therefore,  it  is   concluded  that  W61  will  have  negligible  effect  on  beam  dynamics
provided kx is small. There is no need of compensation of  � -asymmetries of the ring in
this case.

7.4 In-vacuum Undulator (U24) :

It is hybrid type and in-vacuum planar undulator and will be installed in short straight
section 6S. A same simulation routine has been used as in case of W61. Its parameters
required for simulations are listed below;

B0 =  0.66 T ,    b2 =  -1.82 102 [m-2] ,    c3  =  1.99 106 [m-4] ,   d4  =  -5.46 109 [m-6]
----- (vertical poles)

Np = 80  , �   =  24 mm

Linear effects :
� Qx = 0.00 ,  � Qy = 0.001
The linear tune-shifts and � -asymmetries are negligible. Therefore, its linear distortions
can be ignored completely.

Non-Linear Effects :
The device is a planar device and kx �  0 for simulations parameters listed above. It will
not have any affect in horizontal.  The vertical  amplitude-dependent tune-shift is small
and is around 0.002 at y = 7 mm. Therefore, its non-linear effects are also negligible. 

Dynamic Aperture :
The dynamic aperture in vertical plane shrinks from 7mm to 6 mm while no change in
horizontal plane (fig.41). 
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The above parameters show that  kx  is nearly zero. In order to investigate effects of
coupling  kx,  further  studies  have  been  carried  out  using  simulation  routine  of
RACETRACK for planar.
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 (kx/ky)2 = -0.5

Linear tune shifts:

� Qx = 0.002 , � Qy = 0.004

� -asymmetries :

(� � x,y/ � x,y)max < 3 %

The vertical dynamic aperture (fig.43) reduces further by 1 mm and but not much effect
in horizontal. Therefore, strong coupling can limit dynamic aperture further.
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U24 ((kx/ky)2 = -0.5) with linear tunes compensation           stability for U17 without sextupoles ( stability is 

          limited by a sextupole resonance 3Qy = 25).

7.5 In-vacuum Undulator (U17) :

It is hybrid type in-vaccum planar undulator. It will be installed in short straight section
6S in place of U24 in second phase. The simulation studies have been carried out using
RACETRACK routine of ideal field descriptions of a planar device.

B0 = 1.0 T,  Np = 110 , �  = 17 mm 

Linear tune-shifts :

� Qx = 0.0  , � Qy = 0.0021     ---  for   kx = 0

� Qx = -0.0017  ,  � Qy = 0.0042           ---  for   ( kx/ky)2  = -0.5

� -asymmetries :

(� � x,y/ � x,y)max   �   negligible ---  for   kx = 0

 (� � x,y/ � x,y)max  <  3%                           ---  for   ( kx/ky)2  = -0.5

The linear effects of this  device are negligible but increase in vertical  tune has to be
corrected though it is nominal ( already mentioned). 
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Non-linear effects :

The vertical amplitude-dependent tune-shift is maximum in case of U17 (kx = 0) among
three planar devices (fig.42). It is due to fact that  non-linear effects are more severe in
case  of  small  period  devices.  It  is  in  agreement  with   theory as  non-linear  terms  in
Hamiltonian are proportional to  � -2 . The vertical amplitude-dependent tune-shift is still
less than 0.005 in a region of interest. The non-linear effects are still moderate. 

Dynamic Aperture :

The vertical  dynamics  aperture (fig.45) is  reduced by 2 mm in this  case but remains
nearly same in horizontal. There is  not much effect of coupling on it.  
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U17 with kx = 0 and ( kx/ky)2  = -0.5.

Note : During numerical investigations of non-linear behaviour of planar devices, it is noted that vertical
stable amplitude (y = 12 mm) is limited due to excitation of sextupole resonance 3Qy = 25 (fig.44)  in case
of U17 ( without  ring sextupoles). According to the second order pertubation theory,  this resonance can
be excited by y3 term in the Hamiltonian. In case of  insertion device, it appear  in oscillating sextupole-like
terms.   It  has  been  already  discussed  in  this  report  that  these  terms  have  very  strong  amplitude  of
oscillations and their averaged effect can not be ignored. But if matched end poles (orbit matching) are
taken into account (under approximation that � -functions of machine over period length are constant and
variation of betatron tunes over it, are small ) , the  effects of these terms on beam dynamics are cancelled
out. Therefore, the stability should not be limited by sextupole resonances. These observations leave a
question yet to be understood that it happens  either due to break of condition of  cancellation or improper
inclusion of end poles in simulation routine in RACETRACK for planar devices. In my opinion, the effects
of  end  poles   are  not  properly  treated  in  simulation  routine.  In  this  case,  numerical  predictions  are
pessimistic.  

7.6 Combined Effects (2xUE212 + W61 + U24) :

In  order  to  study the  combined  effects  of  all  IDs  on  beam dynamics,  three  devices
2xUE212,  W61  and  U24  are  considered  together.  The  simulation  routine  based  on
polynomial field descriptions of RACETRACK is used for numerical investigations for
all  devices.  The  APPLE-II (2xUE56)  could  not  be  included  due  to  unavailability  of
simulation routines required for 2XUE212 and 2xUE56 in one computer code. Anyway,
effects of 2xUE56 are small and can be ignored on  the beam dynamics. 
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Linear Perturbations :
Linear tune-shifts :
� Qx =  -0.0093   , � Qy  = 0.0273
� -asymmetries :
 (� � x/� x)max  < 4 %
 (� � y/� y)max  < 6 %
( from fig.45)
The maximum � -asymmetries are still nominal and less than 6%. Therefore, there is no
need of any correction of  � -functions. The dynamic aperture in vertical plane (fig.47)
improves by 1 mm when linear tunes are not compensated.  It is  due to sensitivity of
dynamic aperture  with increase in vertical tune. It is seen from fig.49 that it decreases
first till Qy = 8.292 and  then  improves again. This is the reason  that it is better than in
case of no IDs. Also, horizontal dynamic aperture is improved by 5 mm in comparison to
a case when linear tunes are  compensated.  It is due to more equilibrium � -asymmetries
around the ring.

Effect of Shifting of Operating Point on Dynamic Aperture :

The horizontal dynamic aperture drops due to excitation of 5Qx = 104 by 2xUE212 when
linear tunes are compensated. The fractional horizontal tune approaches to 0.8 from 0.82.
In order to avoid excitation of this resonance as well as sensitivity to increase in Qy, the
operating  point  is  shifted  to  (Qx =  20.85,  Qy =  8.27)  and  it  shows  improvement  in
horizontal and vertical dynamic aperture (fig.48).
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8. Summary and Conclusions :

The  various  numerical  models  developed  at  BESSY,  ELETTRA  and  ESRF  for
simulations studies of different types insertion devices have been studied to select proper
routines  to  simulate  and  get  required  input  parameters  for  SLS  devices.  The  model
developed  at  BESSY by G.  Wüestefeld  et  al.  for  APPLE II/Sasaki  type device  and
implemented in computer program BETA, has been used to study 2xUE56 device. A
numerical model developed by L. Tosi et al. at ELETTRA in which the  transverse fields
are expressed in form of polynomial of sixth order and coefficients are obtained from
either  measured  or  numerical  fields  data.  It  is  implemented  in  computer  program
RACETRACK. It has been  used for simulation studies of 2xUE212, W61, U24 and U17.
Also, the simulation routine based on ideal planar field descriptions of RACETRACK,
has been used to study effects coupling (kx �  0) for planar devices W61,U24 and U17.
The simulations studies have been carried out with different IDs and  its  findings are
briefed as follows;

The dynamic aperture (in case of sextupoles only)  in vertical plane is sensitive to a small
increase in vertical  tune Qy.  Firstly, it   decreases till  Qy = 8.293 and start  recovering
afterward keeping strengths of sextupoles as constant. Due to this reason, the dynamic
aperture calculations in presence of IDs show sharp reduction in vertical plane in a case
vertical  linear  tune  is  not  corrected.  It  occurs  due  to  their  quadrupole-like  effects.
Therefore, the dynamic aperture has to be calculated with compensations of linear tunes
for individual cases.
 
a. APPLE II/Sasaki-type (2xUE56) :

i. The maximum  � -asymmetries  and linear   tune-shifts  are  less  than 4% and  0.005
respectively for entire range of  shift parameter. The linear perturbations produced by
this device are nominal.
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ii. A small reduction in dynamic aperture in vertical plane is noticed when increase in
vertical  linear  tune  is  not  compensated.  It  recovers  after  compensation.  While  no
significant effect is observed in horizontal plane.

iii. The non-linear effects of this device are estimated by amplitude-dependent tune-shifts
and distortions of phase space trajectories in absence of sextupoles.  The maximum
amplitude-dependent tune-shifts produced  in the region of interest for SLS are;

� Qx <  10-4        -----         for x = 20 mm

� Qy < 1.5 10-3 -----        for y = 7 mm

The normalized phase space plots show that trajectories in this region are perfect circle
and amplitude-dependent tune-shifts are negligible. Therefore, non-linear effects of this
device can be  neglected for entire range of  shift parameter.

iv. This device will not have any significant effect on dynamic aperture for entire range of
     shift parameters provided vertical linear tune is compensated.

v. There  is  no  effects  of  parallel  displacement  of  beam  and  multipoles  of  chicane
magnets  on  the  dynamic  aperture  though  side  magnets  have  significant  sextupole
component. But their effects  are cancelled out due to alternate polarities.

b. Elliptic Electromagnetic Wiggler ( 2xUE212 ) :

i. The linear perturbations  are;
  
               Linear tune-shifts :      

� Qx = - 0.0091 , � Qy  = 0.0166 
              

 � -asymmetries :    

               <   4 %   ------   Without compensation of linear tune-shifts
   <   6% ------                 With compensation of linear tune-shifts

   (Except at the middle of device)
Though  � -asymmetries  are  nominal  but  are  increase  when  linear  tune-shifts  are
compensated.

ii. The dynamic aperture in horizontal plane shrinks from 19 mm to 10 mm due to linear
perturbations. This  occurs due to excitation of intrinsic 5th order sextupole resonance
5Qx = 104. It appears due to loss of symmetry. The fractional horizontal tune reduces
from 0.82 to 0.8 due to change in � -functions at the sextupole locations and betatron
phases between them  and it  changes the  dependence of tune with amplitude for
sextupoles.
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iii. No significant effect is observed on the  dynamic aperture in vertical plane  provided
increase in a vertical  tune is compensated . 

iv. The amplitude-dependent tune-shifts due to non-linear field of device are less than10-3

in a region of interest. Therefore, non-linear effects of this device are negligible.

v. No  effects of beam displacement and multipoles of chicane magnets are observed on
the dynamic aperture.

   
c. Wiggler W61:

i.  The linear perturbations are;

 Linear Tune-shifts :

� Qx =  0.0002  , � Qy  = 0.01

 � -asymmetries :    

      < 5 %     ----   vertical plane ( with compensation of  linear tune-shift)

ii. No significant effect is observed on dynamic aperture when vertical linear tune is
compensated.  A reduction of 1 mm occurs in  vertical  plane while no change in
horizontal.

iii. The amplitude-dependent tune-shift is produced mainly in a  vertical plane and is
less than 2.10-3 in a region of interest. Therefore, its non-linear effects are feeble and
will not have any significant effect on the dynamic aperture.

iv. Input parameters provided by ID group indicate that kx �  0 . But strong value of it,
can change these conclusions.

v. In-vacuum Undulator U24 :

i. The linear  perturbations   are negligible  and will  not  have  any impact  on beam
dynamics.

Linear tune-shifts :

     � Qx =  0.00  , � Qy  = 0.001

    � -asymmetries :  negligible 

ii. The amplitude-dependent tune-shift is  produced mainly in a  vertical  plane and is
roughly same as in case of W61 in region of our interest though it will be more in
comparison to W61 for higher amplitude due to smaller period length.
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iii. No significant  effect on dynamic aperture is observed. The reduction of 1 mm occurs
in vertical plane while remains unchanged in horizontal.

iv. The input parameters provided by ID group indicate that kx �  0. In this case, above
conclusions can change.

e. In-vacuum Undulator U17:

i. The linear perturbations are negligible in this case also ( kx �  0 )  and hence will not
have any impact on beam  dynamics .

Linear tune-shifts :

� Qx =  0.00  , � Qy  = 0.002

� -asymmetries :  negligible 

ii. This device produces the strongest non-linear effects among three planar devices due
to  shortest   period  length.  The  vertical  amplitude-dependent  tune-shift  is  around
5.10-3 at y = 7 mm.

iii. The  dynamic  aperture  in  vertical  plane  reduces  by  2  mm  while  by  1  mm  in
horizontal.

f. Combined Effects ( 2xU212+W61+U24) :

i. The linear perturbations are;

Linear tune-shifts :

� Qx =  - 0.0093  , � Qy  = 0.0273

� -asymmetries :
 
    < 4 % ------    horizontal
    < 6 % ------  vertical

These  are still nominal and no increase in it due to many devices. 

ii. The dynamic aperture is improved in both planes if linear tunes are not compensated.
It improves in horizontal plane from 10 mm to 15 mm though it was 10 mm in case of
2xUE212 only. It is 8 mm in vertical while it was 6 mm in case of  planar devices. It is
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limited to 9 mm in horizontal if linear tunes are compensated.  It happens due more
equilibrium � -asymmetries and shift of fractional vertical tune above 0.3.

iii. The horizontal dynamic aperture shows improvement in case operating point is shifted
in such  a way that fractional horizontal tune moves away from 0.8.
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