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Introduction

The original design of the booster-to-ring (BR) transferline provided matching of the
beam from the booster to the storage ring, assuming identical optical parameters of in-
jected and stored beam at the location of the injection septum [1]. However, considering
the storage ring’s minimum acceptance required to completely catch the injected beam,
this is not the optimum. In the following, we will calculate the optimum matching in
general, apply it to SLS, establish the corresponding BR-optics and report on the im-
provements thus achieved at SLS.

Optimum injection matching
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Figure 1: Injection phase space: Stored beam displaced by kicker bump (purple), injected
beam (red) for original (dotted) and optimum matching (solid) and corresponding accep-
tances (blue) required to completely catch the injected beam. In phase space the septum
appears as strip of widthD (grey).

Figure 1 shows the injection into the storage ring in phase space (x,x′), since injection
is done horizontally in SLS:ǫs andǫi define stored and injected beams’ emittances,βs

andβi are the betafunctions at injection. The injected beam from the booster requires
an acceptanceA of the storage ring in order to be captured up toNi standard deviations.
The distance of the stored beam to the septum of thicknessD is determined by another
numberNs of stored beam standard deviations required to avoid too large losses at the
septum.

In the following, the acceptance will be calculated and minimized in respect to the
injected beam’s properties. As already sketched in the figure, the required acceptance for
βi < βs (solid) will be smaller than the acceptance forβi = βs (dotted).

For simplicity we consider only the case that both stored andinjected beams have foci
at the septum, i.e.αs = αi = 0, and that there is no dispersion. This assumptions are true
for SLS. We further have to restrict the calculations to linear transformations.

With these simplifications and using the stored beam’s center as origin (the displace-
ment due to the injection bump is irrelevant for our considerations), the acceptance ellipse
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is described by
1

βs

x2 + βsx
′2 = A (1)

The ellipse enclosingNi standard deviations of the injected beam is described by

1

βi

(

x −
[

Ns

√

ǫsβs + D + Ni

√

ǫiβi

])2

+ βix
′2 = N2

i ǫi (2)

Now the acceptance can be calculated by elimination ofx′2 and requesting a unique solu-
tion forx. It is however more instructive to calculate it by differentiation: If we consider a
particle on the perimeter of the injected beam’sNi-sigma ellipse, its coordinates are given
by

x = Ns

√

ǫsβs + D + Ni

√

ǫiβi(1 + cosφ) x′ = Ni

√

ǫi

βi

sin φ (3)

As visible in figure 1, the particle coordinatex relative to the stored beam’s center con-
tains contributions from the stored beam stay-clear, the septum thickness, the injected
beam stay-clear and the angleφ 1. Inserting eq.3 into the acceptance from eq.1 and, for
convenience, introducing the abbreviations

a := N2
i ǫi b :=

√

βi

βs

δ :=
Ns

√
ǫsβs + D

Ni

√
ǫiβs

the acceptance can be written as

A =
a

b2

(

1 + (δ + b)2 + 2b3(δ + b) cos φ − (1 − b4) cos2 φ
)

. (4)

In order to accept the complete injected beam, the maximum ofA with respect toφ has
to be found:

∂A

∂φ
= 0 −→ sin φ

(

b3(δ + b) − (1 − b4) cos φ
)

= 0

The trivial solution is given forφ = 0◦. A more interesting solution is given by

cos φ =
b3(δ + b)

1 − b4
. (5)

In the case of an upright ellipse, corresponding to an extremely focussed injected beam
( b→0 ) the anglesφ = ±90◦ determine the maximum acceptance.

Since bothδ andb are positive by definition, solutions of eq.5 exist only for

0 < b ≤ blim, with 2b4
lim + δb3

lim = 1. (6)

As long as the local curvature of the injected ellipse is smaller than the curvature of the
acceptance ellipse,φ = 0◦ defines the acceptance. If the curvature becomes smaller for
b < blim from eq. 6, two new tangential points with±φ given by eq.5 define the acceptance

1The angleφ in the drawing is only correctly shown, if the injected beam’s ellipse happens to be a circle.
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andφ = 0◦ becomes a local minimum as easily verified by evaluating∂2A/∂φ2, also see
figure 1.

By introducing eq.5 into eq.4 the acceptance for0 < b ≤ blim can be written as

A = a

(

1

b2
+

(δ + b)2

1 − b4

)

(7)

The acceptance forb ≥ blim is simply given by

A = a(δ + 2b)2 (8)

In order to find the optimum matching of the injected beam requiring the minimum
acceptance for full capture, we have to minimizeA with respect tob. This gives the
unwieldy expression

∂A

∂b
= 0 −→ 3δb7 + 2δ2b6 + 3b4 + δb3 = 1 (9)

However, we can introduce eq.5 into this equation by carefulbracketing and suitably
adding zeros. After some algebra we thus arrive at a simple quadratic equation for the
angle of the tangential points:

2 cos2 φ + cos φ = 1 (10)

The two solutionscos φ = −1 andcos φ = 1/2 correspond toφ = 180◦ andφ = ±60◦.
For φ = 180◦ the injected beam would be completely outside the acceptance, which is
of no interest. The minimum acceptance for capture of the whole injected beam thus is
given forφ = ±60◦. This value is independant of the particular choice ofδ andb! Only
the requirement from eq.6 has to be fulfilled for this solution to exist.

Introducing this solution into eq.5 the equation to obtain the optimumb is simplified
to

3b4
opt + 2δb3

opt = 1. (11)

However, this equation still has to be solved numerically for the specific value ofδ.

Application to the SLS BR transferline

Beam parameters for the booster at extraction, for the storage ring at injection and for the
optimum injection matching are given in the table below:

booster extraction stored beam optimum injection
Location ABOMA-BD-6D exit ARIMA-YIN exit
Horizontal emittanceǫx [mm·mrad] 0.01 0.005 0.01
Horizontal beta functionβx (= β) [m] 2.68 4.71 0.64
Horizontal alpha functionαx [rad] −0.61 -0.18 ≈0
Vertical beta functionβy [m] 9.92 3.90
Vertical alpha functionαy [rad] 2.68 -0.22
Horizontal dispersionηx [m] 0.22 0
Horizontal dispersion’s slopeη′

x [rad] 0.10 0
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The booster values are from theB39 optics at a working point of 12.40/8.38, close
to the original design [2], for providing smallest beam diameters. Recently, by shaping
of quadrupole waveforms, constant tunes over the ramp have been achieved in order to
ensure the validity of the optical parameters also at extraction. Measurements of beta
functions at injection energy had proven agreement with design [3].

For the ring, the standardD2R optics for low emittance with dispersion free straight
was used, with the working point at 20.38/8.16. The betafunctions have been measured
and corrected to agree with the design to a few percent [4].

The optimum injection parameters are based on matching the BR line to the solution
of eq.11, with theδ-parameter determined by

Ns = 20, Ni = 3, D = 3 mm,

with the numbers of stored and injected beam sigmas arbitrarily chosen andD the thick-
ness of the septum. The limiting and optimum values forb andβi from eqs. 6, 11 thus
are

bopt = 0.37 −→ βi,opt = 64 cm, blim = 0.46 −→ βi,lim = 1.0 m.

b=1blimbopt          

Figure 2: Acceptance vs.b-parameter for SLS injection: The solid line corresponds to
eqs.7 and 8 over the whole range ofb-values, the dotted line is eq.8 forb < blim

The horizontal acceptanceA of the SLS storage ring as a function ofb is shown in
figure 2: Changing the injection from the currentb = 1 setting tob = bopt reduces
the required acceptance from 11.7 to 9.4 mm·mrad, resp. the required [dynamic] aperture
(acceptance projected ontox-axis) from 7.3 to 6.5 mm. Although this improvement seems
small, the gain in injection efficiency is significant if injection operates at the very edge
of dynamic aperture.

Figure 3 shows the optics of the booster to ring transferline: Matching to the exact
optimum value ofβx,i,opt = 64 cm inverted the polarities ofABRMA-QB-1 andQC-
2, however, since the values were small, both quadrupoles could be set to zero. The
matching with the remaining five quadrupoles andβx,i as a free variable resulted in a
value ofβx,i,opt = 68 cm. Considering the weak dependancy of acceptance onb as shown
in figure 2, this result certainly is good enough.

The table gives the required quadrupole currents at 2.4 GeV:
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Beta−X Beta−Y

Dispersion

KEX YEX B−1 B−2 B−3 YIN
BF−6D BD−6E QA QB−1

QB−2
QC−1 QC−2 QC−3 QC−4

ABOMA− ABRMA− ARIMA−

Figure 3: BR transferline optics for oldb = 1 matching (dotted) and newb ≈ bopt

matching (solid). The line as shown starts with the extraction kicker in the booster and
ends at the end of the ring injection straight.

ABRMA- QA QB-1 QB-2 QC-1 QC-2 QC-3 QC-4
I [A] 53.4 0 65.6 88.1 0 74.8 92.4

Results

Current in the boosterIbo(t) is measured by the MPCT and shown on a scope in the con-
trol room. Current increase per second in the ringİri is obtained from the ring PCT current
measurement. The injection efficiency is the ratio of chargeaccepted by the storage ring
over the charge in the last booster turns before extraction:

Injection efficiency=
∆qri

qbo

=
İriCri

Ibo(text.)Cbofrep

= 0.3413
İri[mA/s]

Ibo(text.)[mA]

with Cri = 288 m, Cbo = 270 m ring and booster circumferences, andfrep = 3.125 Hz
the injection repetition frequency.

With the original transferline setting, efficiencies of up to 100 % could be achieved
with nominal ring chromaticitiesξx = ξy = +1, however with increased chromaticities
of ξx = ξy ≈ +5, as required for suppression of the coupled bunch instabilities at higher
current, the best efficiency values ever reached amounted to≈50 %.
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With the optimum transferline setting, the efficiency at nominal chromaticities was
100 % without much fine tuning, and up to 80 % at large chromaticities ofξx = ξy = +6.

The remaining losses of 20 % are probably due to an energy mismatch between
booster and ring affecting the injected beam stronger at high chromaticities and subject to
further investigations.

Furthermore, design calculations predicted an horizontalstorage ring acceptance of≈
30 mm·mrad, which is much larger than the effective acceptances ofabout 10 mm·mrad
as encountered in the injection process. This discrepancy has to be explored.
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Injection with dispersion
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Figure 4: Injection at a dispersive location: The beam ellipse (black) appears shifted for
momentum deviations (red and blue), consequently the acceptances to capture the satel-
lite beam depend on momentum too. (The signs of momentum deviations as arbitrarily
sketched here depend on the sign of the dispersion function and whether injection is done
from the ring inside or outside.)

If the stored beam has non zero dispersionηs at injection, some of the equations above
have to be modified: As shown in figure 4 (in comparison to fig.1), the requiredNs-sigma
distance from the septum is now given by the radius of the greyellipse, obtained from the
convolution of the natural beam emittance with the wideningby local dispersion:

Ns

√

ǫsβs + (ηsσs)2,

whereσs indicates the stored beam’s rms relative energy spread.
The injected beam must not have any dispersion, because any dispersion could only

widen it, as obvious from figure 4: Thusηi = 0 is the optimum value, no matter what is
the dispersion of the stored beam,ηs .

The acceptance for capture of the satellite beam depends on momentum and is largest
for the left ellipse in figure 4. A particle on the perimeter ofthe injected beam’sNi-sigma
ellipse relative to the origin of this stored beam’s off momentum ellipse thus is given by

x = Ns

√

ǫsβs + (ηsσs)2 + D + Niηsσi + Ni

√

ǫiβi(1 + cosφ) x′ = Ni

√

ǫi

βi

sin φ

Here we added the distance between the on- and off-momentum stored beam centres,
where the relevant momentum deviation was identified by the requirement to also capture
Ni sigma of the injected beam’s energy distribution of rms valueσi.
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Comparison to eq.3 tells that the calculation may proceed inthe same way as before,
by simply replacing the quantityδ by

δ̃ :=
Ns

√

ǫsβs + (ηsσs)2 + D + Niηsσi

Ni

√
ǫiβs

Consquently we will obtain another result for the optimum betafunctionβi of the injected
beam as in the non-dispersive case.

Aperture requirements

In order to save kicker strength one would like to place the septum close to the optical
axis. On the other hand, the distance has to be chosen sufficiently large in order not to
restrict the relative energy acceptance∆ and with it the Touschek lifetime, and to not
scrape the injected beam.

The maximum horizontal deviation of a particle has several components:

• Betatron oscillation of particles that underwent Touschekscattering somewhere else
in the ring with the maximum amplitude given by maximum valueof the lattice
invariantH and the required energy acceptance. Translating to the locations of
the septum (S) and to where the maximum aperture is required (A) we getxsh =√
Hβs∆, resp.xah(s) =

√

Hβ(s)∆.

• The dispersive orbit offset is given byxsη = ηs∆, resp.xaη(s) = η(s)∆

• Since the Touschek scattered particle may also come with an initial betatron am-
plitude, we have to include theN-sigma beam stay clear:xsβ = N

√
ǫsβs, resp.

xaβ(s) = N
√

ǫsβ(s). Note thatN could be chosen larger thanNs, the stored beam
stay clear during injection, where one might accept some scratching. The dispersive
contribution to beam size is already covered by the Touschekparticle amplitude.

• Considering the full capture of the injected beam, we need atleast
xis =

√
Axβs + Niσiηs, resp.xia(s) =

√

Axβ(s) + Niσiη(s).

• Finally, some orbit distortionxco may be added based on simulations of possible
orbit excursionbetween BPMs and assumptions on BPM imperfections.

For the Touschek scattered particles, the maximum excursion at the septum thus is given
by xTouschek,s = xsh + xsη + xsβ + xco.

The maximum excursion somewhere else in the ring requires finding the maximum
xTouschek,a = maxs{xah(s) + xaη(s) + xaβ(s)}+ xco. This is simplified by assuming that
the maximum values of beta and dispersion occur at the same location, which is more or
less the case for most light source lattices

For capture of the injected beam, we get
xInjection,s = xis + xco, resp.xInjection,a = maxs{xia(s)} + xco.

Finally, minimum septum distancexs and minimum vacuum chamber half widthxa

(assumed constant around the ring) are given byx = max{xTouschek; xInjection}.
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Figure 5: Touschek lifetime calculations for SSRF: right figure shows local (±) mo-
mentum acceptance and lifetime, left figure shows lifetime (red) and energy acceptance
(green) vs. RF voltage

Note, that these considerations based on the ideal linear model have to be confirmed
by tracking simulations including the non-linear betatronmotion as well as the chromatic
variation of betafunctions.

The vertical acceptance is determined by the lengthL and gapg of the insertion device
giving the lowest number according toAy = (g/2)2/L, assuming optimum beta-matching

for largest acceptance. This translates to maximum vertical excursion ofy =
√

Ayβy,max

at the location of maximum vertical beta. Something for the orbit should be added too.
Table 1 gives an example for the SSRF-5 lattice, resulting in15.5 mm septum dis-

tance and a beam pipe that could be as small as 50 mm wide by 15 mmhigh (inner
dimensions), provided there are no objections concerning vacuum system and resistive
wall impedances.

A Touschek lifetime 4D-calculation based on the SSRF-5 lattice with apertures and
septum distance as calculated is shown in figure 5: The local momentum acceptance (right
figure) is larger than 3.5% everywhere (except at a few locations due to nonlinear distor-
tions of the betatron oscillation) and physically limited.This becomes clear when looking
at lifetime as a function of RF voltage: Saturation above theproposed RF voltage of 4 MV
indicates, that the lattice acceptance still does not dominate the energy acceptance. The
effective lattice energy acceptance derived from Touschekaverages amounts to 3.8 %,
larger than the 3.5 % as determined by the RF. With 1 mA per bunch and assuming 1 %
emittance coupling, a Touschek lifetime of 24 hours results. Of course, this result requires
confirmation from 6D-calculations including lattice imperfections.
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Table 1: The SSRF-5 optics as an example for calculation of injection parameters and
physical acceptances.beta i is the result of a numerical solution of eq.11.

ssrf 5 aperture requirements Input

D Thickness of the septum sheet 3 mm
N_s Number of sigmas for stored beam when passing by septum 7
beta_s Betafunction of stored beam at septum 10.2 m 
epsilon_s Emittance of stored beam 4 nm rad
N_i Number of injected beam when passing by septum 3
beta_i Optimum betafunction of injected beam at septum 4.25 m <--
epsilon_i Emittance of injected beam 110 nm rad
sigma_i Injected beam energy spread 0.0010
A_x Acceptance required for capture on momentum 8.61 mm mrad

delta^acc Required energy acceptance 3.5 %
beta_max Maximum betafunction somewhere in the machine 26 m 

... dispersion at this location: 0.2 m
eta_max Maximum dispersion somewhere in the machine 0.31 m 

... betafunction at this location: 17.5 m
H_max Maximum value of the H-function in the machine 0.005660 m rad
eta_s Dispersion at the location of the septum 0.15 m 

rms relative energy spread of the stored beam 0.00100
N Number of sigmas for stored beam everywhere 7

offset of dispersive orbit 5.18 mm
betatron oscillation of maximum Touschek particles 8.41 mm
stored beam clearance 1.41 mm
allowed tolerance for orbit deviation 0.5 mm
Minimum distance for septum to maintain E-acceptance 15.5 mm
Minimum distance of septum for capture of injected beam 9.81 mm
Minimum distance of septum 15.5 mm
Required bump height 14.09 mm

Location of maximum beta
offset of dispersive orbit 7 mm
betatron oscillation of maximum Touschek particles 13.43 mm
stored beam clearance 2.26 mm
Location of maximum eta
offset of dispersive orbit 10.99 mm
betatron oscillation of maximum Touschek particles 11.02 mm
stored beam clearance 1.85 mm
Capture of injected beam
Excursion at max beta location 14.96 mm
Inj beam energy spread capture 0.6 mm

allowed tolerance for orbit deviation 1 mm
Horizontal aperture from max beta location 23.68 mm
Horizontal aperture from max eta location 24.86 mm
Horizontal aperture from injection capture 16.56 mm
Horizontal aperture requirement (half width) 24.86 mm

Acceptance limiting ID: full length 4.5 m 
Acceptance limiting ID: full gap 7 mm

A_y Vertical acceptance (assuming optimum beta) 2.72 mm mrad
beta_y_max Maximum vertical beta somewhere 16 m 

allowed tolerance for orbit deviation 0.5 mm
Vertical aperture requirement (half height) 7.1 mm
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