
SLS-TME-TA-2002-0216
September 18, 2002

CORBA EXPERIENCE AT THE SLS

C. Beny, M. Böge, J. Chrin, M. Grunder,
M. Janousch, R. Krempaská, M. Muñoz, A. Streun

Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Abstract

Beam dynamics applications and components of the beamline experimental controls
system at the Swiss Light Source (SLS) have benefitted from a distributed and hetero-
geneous computing environment in which the Common Object Request Broker Archi-
tecture (CORBA) forms the middleware layer and access point to essential software
packages. Use is made of CORBA methods provided by the Portable Object Adapter
(POA) for accessing ORB functions, such as object reactivation and object persistence,
the Implementation Repository (IMR) for the automatic reactivation of servers, and the
CORBA Event Service for the propagation of controls and physics data. An account of
the experience gained, in the three years since development work began to the present
time of first SLS operation, is presented.

Talk presented at the CORBA Controls Workshop, 9-11 October 2002,
European Synchrotron Radiation Facility (ESRF), Grenoble, France





CORBA EXPERIENCE AT THE SLS

C. Beny, M. Böge, J. Chrin, M. Grunder, M. Janousch, R. Krempaská, M. Muñoz, A. Streun
Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract

Beam dynamics applications and components of the
beamline experimental controls system at the Swiss Light
Source (SLS) have benefitted from a distributed and het-
erogeneous computing environment in which the Common
Object Request Broker Architecture (CORBA) forms the
middleware layer and access point to essential software
packages. Use is made of CORBA methods provided by
the Portable Object Adapter (POA) for accessing ORB
functions, such as object reactivation and object persis-
tence, the Implementation Repository (IMR) for the auto-
matic reactivation of servers, and the CORBA Event Ser-
vice for the propagation of controls and physics data. An
account of the experience gained, in the three years since
development work began to the present time of first SLS
operation, is presented.

1 MOTIVATION

The Swiss Light Source (SLS) is a synchrotron light
source located at the Paul Scherrer Institute (PSI) in
Switzerland. The SLS was successfully commissioned
in August 2001 and has since been delivering light of
high brilliance to beamlines occupied by experimenters
from a variety of disciplines. Several high-level beam
dynamics (BD) applications have been developed for the
operation and monitoring of the SLS accelerator facili-
ties. Fig. 1 captures typical components required by BD
applications. Their number and demand on computer re-

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

Net8

Oracle

access
channel

VME

Net8

Accelerator
Model Control

Device

Database
Server

Event
Logger

CORBA SOFTWARE BUS

Figure 1: DOC components serving BD applications

sources motivated, in part, a desire for a distributed com-
puting environment. To this end, the Common Object Re-
quest Broker Architecture (CORBA) [1], now a ‘de facto’
standard for distributed object computing (DOC), has
been employed. Similarly, in the beamline environment,
experimenters, faced with the task of integrating distributed
devices running incompatible controls systems, have

turned to CORBA to provide the middleware to a common
experimental controls user interface, as depicted in Fig. 2.

NT (C++)

Client
Linux (Java, Python/Tk)

Server

Proprietary
bus

CCD Electron
microscope

skeleton skeleton

stub

Experimental Control

Figure 2: CORBA components of a beamline experimental
controls system

The use of CORBA at the SLS has allowed us to real-
ize the potential benefits of distributed computing and to
simultaneously exploit inherent features such as the inter-
operability between objects implemented in various pro-
gramming languages and on different operating systems.
Further details of the CORBA software and hardware
environment, as applied to beam dynamics applications and
beamline experimental controls, appear in [2-5] and [6], re-
spectively.

2 PRACTISING CORBA

First CORBA experience at the SLS dates from Sum-
mer 1999. The principal CORBA product employed was
(and still is) MICO [7], available free of charge under the
GNU public license terms. At the time, this was one of the
most developed ORBs and, being CORBA 2.2 compliant
(currently 2.3), offered the Portable Object Adapter (POA).
MICO features IDL (Interface Definition Language) map-
ping to C++. In addition, and significantly for the SLS,
a Tcl extension [8] provides CORBA client and server
functionality through the Dynamic Invocation Interface
(DII) and Dynamic Skeleton Interface (DSI), respective-
ly. MICO does not, however, provide IDL to Java map-
ping. Several Java-based ORBs were examined, namely
JavaORB [9], JacORB [10], before settling with ORBacus
(version 4) [11], the only ORB of the three verified to oper-
ate fully with MICO.1 A further ORB in use at the SLS is
omniORB[12], chosen for its language binding to Python.

1Extensive interoperability tests between MICO and both JavaORB
and JacORB revealed a misinterpretation of data due to a misalignment of
the binary layout of certain IDL datatypes. The interoperability problems
experienced may well have been rectified in the more recent releases of
these Java-based ORBs



Experience with CORBA subcomponents in use at the
SLS is presented. In particular, use is made of the Naming
Service, functions provided by the POA, the Implementa-
tion Repository (IMR) and the Event Service.

2.1 The Naming Service

The Naming Service is used to map self-describing
names to the obscure stringified object references. A fur-
ther welcome feature, however, is the naming graph, which
comprises a hierarchy of contexts and bindings. A name
binding is the term given to a name-to-reference associa-
tion, while a naming context refers to an object that stores
name bindings. A naming graph has been effectively em-
ployed in implementing and managing the vast number of
object references required for database application objects,
where each object maps to a single row (or line) of a
database table [13].

l_1

l_3
l_4

l_n

l_2
l_1

l_3
l_4

l_n

l_2
l_1

l_3
l_4

l_n

l_2
l_1

l_3
l_4

l_n

l_2

Initial Naming Context

slsbt

master position

userSLS:database

slsct

x11ma x06ma

Context

Object
Object Reference

Figure 3: A naming graph for implementing database
object references

Fig. 3 shows the naming graph in use for implement-
ing a sample of database object references. Each context
object implements a table that maps names to object refer-
ences that point to either an application object (solid node)
or to another context object (hollow node) in the Naming
Service. Given a starting context, one can navigate to a
target node by traversing a path from a starting context
(e.g. SLS:database) through other contexts (e.g. database
instant: slsct; table name: position) to the target node (line
number: l n). In this way, a sequence of bindings forms a
pathname that uniquely identifies the target object.

2.2 The Portable Object Adapter

The most basic task of the Object Adapter (OA) is
to create object references and to dispatch ORB requests
aimed at target objects to their respective servants. In its
now mandatory version, the POA further provides CORBA
objects with a common set of methods for accessing ORB
functions, ranging from user authentication to object acti-
vatiion and object persistence. The characteristics of the
POA are defined at creation time by a set of POA polices.
A server can host any number of POAs, each with its own
set of policies to govern the processing of requests.

Transient and persistent objects are two categories of
objects that relate to the lifespan policies of the POA. A
transient object is short-lived with a lifetime that is bound-
ed by the POA in which it was created. A persistent object,
on the other hand, is long-lived with a lifetime that is un-
bounded. It can consequently outlive the very server pro-
cess wherein it was created. This has several advantages. A
server may be shutdown whenever it is not needed to save
resources; server updates can be implemented transparant-
ly by restarting the server; in the event of a server crash,
persistent objects are able to maintain their identity.

Among the more advanced POA features is the servant
manager which assumes the role of reactivating servants
as they are required, diligently providing a mechanism to
save and restore an object’s state. Requests for server reac-
tivation can, alternatively, be delegated to a single default
servant which provides implementations for many objects,
thereby increasing the scalability for CORBA servers. Ap-
propriate POA policies need therefore be chosen to config-
ure OAs that best fulfill the requirements of the server.

Server objects at the SLS are typically of persistent type
and are handled through a servant manager, the servant ac-
tivator, which provides the incarnate and etherealize oper-
ations to save and restore an object’s state. Servers that
implement a single default servant are also in use. The
database server is such an example [13]. As illustrated in
Fig. 3, each row of a database table is identified by its own
object reference. However, by adopting a single default
servant to incarnate each database application object, the
number of active objects remains constant, thereby demon-
strating the scalability of such CORBA servers.

2.3 The Implementation Repository

While the POA supports and implements persistent
objects, it does not handle the administrative aspects of
server activations. This is managed by the Implementa-
tion Repository (IMR) which stores an activation record for
each server process; it is consulted automatically whenever
a (re-)launch of a server is mandated. The first instance of
the server is started by an IMR administrative process and
object references, pointing to the POA Mediator within the
ORB daemon process, are exported to the Naming Service.
The POA Mediator thus intercepts initial client requests,
(re-)activates the server if so required, and forwards the ac-
tual server location to the client for all subsequent opera-
tions. Thus, by virtue of the activation techniques of the
IMR, coupled with the capabilities of the POA, clients are
never starved of the servers they require - a tremendous re-
sponse to reviewers who may doubt the reliability of such
a DOC environment. The importance of the IMR cannot
therefore be over-emphasized! It is thus perhaps surprising
that the actual interface to the IMR is not defined by the
Object Management Group (OMG) group [1], which man-
dates only its existence. Consequently, each ORB hosts its
own specific implementation.



2.4 The Event Service

A reactive, event-based, form of programming is sup-
ported by the CORBA Event Service which provides
services for the creation and management of CORBA
event channels. These may be used by CORBA suppli-
er/consumer clients to propagate events asynchronously on
a push or pull basis. Event channels are created and reg-
istered with the Naming Service allowing clients to obtain
object references in the usual manner. Communication is
anonymous in that the supplier does not require knowledge
of the receiving consumers. Publicized inadequacies of the
Event Service are a lack of explicit quality of service (QoS)
control, the necessity (for most ORBs) of propagating event
data with type CORBA::any, and the absence of event fil-
tering. Nevertheless, by applying a few simple design tech-
niques, these limitations can be largely circumvented and
the Event Service has been usefully employed in the mon-
itoring of hardware devices and in the distribution of re-
calibrated data to client consumers. The CORBA Event
Service is ultimately to be replaced by the CORBA Noti-
fication Service which systematically addresses the short-
comings of the Event Service. A significant improvement
is the introduction of the “structured event type”, making it
possible to distinguish between different event types.

3 PRESENT DIRECTION

MICO is our “backbone” CORBA product. When soft-
ware development work began in 1999, MICO was already
an advanced and well developed ORB, allowing us to con-
solidate quickly and begin with implementing our client-
server model. We were thus able to use features (e.g. the
POA) that only later became available in other ORBs. Our
present CORBA framework will thus keep us in good stead
for the years to come, allowing application developers to
continue to make use of the current CORBA framework.
Nevertheless, some niggling problems, which have to some
extent been circumvented through some simple design con-
siderations, need to be addressed in the near future. We
experienced memory leaks in servers that use the Portable-
Server::Current interface (specifically, the “get object id”
method) and in C++ clients when catching CORBA excep-
tions. Tcl client applications that are consumers to an event
channel have been known to crash the event daemon when
terminated, ungracefully, while in the process of receiving
an event.

ORBacus, once a free ORB, now demands license fees!
Our use of Java is client based and, as such, our frozen
version (ORBacus 4) is sufficiently capable of serving our
needs for the near future. However, as ORBs develop and
comply to newer OMG standards, it is hoped, and can be
expected, that other non-commercial ORBs will provide a
viable match to the commercial products.

MICO supports objects by value semantics, wherein
a value type can declare both state members and opera-
tions/attributes. Such value types could be gainfully em-
ployed in the realm of database application objects allow-

ing, for example, a convenient “result set”, similar to that
returned from database queries within the JDBC API, to be
realized [13].

4 CONCLUSION

The CORBA middleware has been used to interface sev-
eral software packages required by beam dynamics app-
lications and beamline experimental control. The use of
CORBA has allowed for the development of a heteroge-
neous distributed system in which objects, implementented
in various languages (C, C++, Java, Tcl/Tk and Python)
and on different operating systems, are able to interoper-
ate. Use has been made of the Naming Service, the Event
Service, several POA functions and the IMR. In particular,
the power and flexibility of the POA, coupled with the acti-
vation records stored within the IMR, has been exploited to
provide a robust and modular CORBA based client-server
framework. The framework has been proved to be both re-
liable and stable by the many CORBA based applications
deployed in the first operation of the SLS.

5 REFERENCES

[1] OMG, CORBA, http://www.omg.org/

[2] M. Böge, J. Chrin, “On The Use of CORBA in High Level
Software Applications at the SLS”, Proc. 8th Int. Conf. on
Acc. and Large Experimental Physics Control Systems
(ICALEPCS’01), 27-30 Nov. 2001, San Jose, USA, p. 430

[3] M. Böge, J. Chrin, M. Muñoz, A. Streun, “Commission-
ing of the SLS using CORBA Based Beam Dynamics App-
lications”, Proc. 2001 Particle Acc. Conf. (PAC 2001), 18-
22 June 2001, Chicago, USA, p. 292

[4] M. Böge, J. Chrin, “CORBA Objects for SLS Subjects”, Pa-
per ID: 054, Proc. 3rd Int. Work. on Personal Computers
and Particle Acc. Controls (PCaPAC 2000), Oct. 9-12, 2000,
DESY, Hamburg, Germany;
http://desyntwww.desy.de/pcapac/Proceedings/

[5] M. Böge, J. Chrin, M. Muñoz, A. Streun, “Development of
Beam Dynamics Applications Within a CORBA Framework
at the SLS”, Proc. 7th European Particle Acc. Conf. (EPAC
2000), 26-30 June 2000, Vienna, Austria, p. 1354

[6] J. Krempaský et al., “The SLS Beamlines Data Acquisition
and Control System”, Proc. 8th Int. Conf. on Acc. and Large
Experimental Physics Control Systems (ICALEPCS’01),
27-30 Nov. 2001, San Jose, USA, p. 24

[7] MICO, http://www.mico.org/

[8] F. Pilhofer, “Combat, CORBA Scripting with Tcl”,
http://www.informatik.uni-frankfurt.de/˜fp/Tcl/Combat/

[9] JavaORB, http://dog.team.free.fr/index javaorb.html

[10] JacORB, http://www.jacorb.org/

[11] ORBacus, http://www.ooc.com/

[12] omniORB, http://omniorb.sourceforge.net/

[13] M. Böge, J. Chrin, “Making a Statement with CORBA”,
Paper ID: TU-02, to be presented at the 4th Int. Work. on
Personal Computers and Particle Acc. Controls (PCaPAC
2002), Oct. 14-17, 2002, Frascati, Italy;
http://www.lnf.infn.it/conference/pcapac2002/


