
SLS-TME-TA-2004-0255
December 17, 2004

An Event Service for the Propagation of Data

M. Böge, J. Chrin

Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Abstract

An event delivery mechanism based on the CORBA Event Service is described. Low-
level hardware data are aggregated by event processing agents to produce complex
events which supply summarized data to event channels for distribution to registered
consumers, typically high-level software applications. The CORBA Notification Service,
a recent extension to the Event Service, is also examined and potential enhancements
to our event delivery system are identified.

AN EVENT SERVICE FOR THE PROPAGATION OF DATA

M. Böge, J. Chrin, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract

An event delivery mechanism based on the CORBA
Event Service is described. Low-level hardware data are
aggregated by event processing agents to produce complex
events which supply summarized data to event channels for
distribution to registered consumers, typically high-level
software applications. The CORBA Notification Service,
a recent extension to the Event Service, is also examined
and potential enhancements to our event delivery system
are identified.

1 INTRODUCTION

The accelerator device control system [1] at the Swiss
Light Source (SLS) is based on the Experimental Physics
and Industrial Controls System (EPICS) [2] whose com-
munications protocol is Channel Access (CA) [3]. Appli-
cation programming interfaces (APIs), such as the EZCA
library [4] and the Common Device (CDEV) C++ class
library [5], serve to hide the details of the CA protocol. A
CORBA [6] interface to these APIs connects the controls
system to the CORBA software bus used by developer-
s of beam dynamics (BD) applications [7-10]. Access to
the control system using the CORBA two-way communi-
cation model is the accustomed approach. This is illustrat-
ed in Fig. 1, wherein a CORBA Remote Method Invocation
(RMI) is seen to take on the familiar appearance of a local
function call.

request

operation(arguments)

response
client server

C++: object->operation(arg1, arg2, ...)

Java: object.operation(arg1, arg2, ...)

Tcl: $object operation arg1 arg2 ...

Figure 1: The CORBA request/response model

Situations exist, however, where the standard CORBA
synchronous request/response exchange between client and
server is not the optimal means of data transfer. One ex-
ample is when a group of related devices, of interest to
many clients, changes value. Each client would be re-
quired to either poll the server repeatedly for updated val-
ues or establish a (more involved) callback procedure. In
such cases, data propagation is better served through an al-
ternative,reactive form of programming, wherein clients
are notifieden masse of updated values. Such a delivery
mechanism has been specified by the Object Management

Group’s (OMG) Common Object Services (COS) Specifi-
cation Volume [11], in the form of the Event Service [12]
and its extension, the Notification Service [13]. The latter,
being a recent addition to the original OMG COS Specifi-
cation, is yet to be implemented in our principal CORBA
product, MICO [14]. Improvements to the event delivery
mechanism introduced by the Notification Service specifi-
cation are, nevertheless, addressed in this Note.

The OMG Event Service supports decoupled commu-
nication between multiple suppliers and consumers. This
Note describes how low-level hardware events are ag-
gregated to produce complex events that are propagated
through the Events Service providing applications with a
more personalized view of a given component of a control
system. Indeed, much of the data on display in beam dy-
namics applications are received in this way. The Event
Service has also been effectively employed for the moni-
toring of single hardware events.

2 EVENTS AND EVENT PATTERNS

Event driven systems are now commonplace in this
era of information technology. A recent critique appears
in [15]. They bring with them new terms and concepts,
among which the notion of Complex Event Processing
(CEP) is central. The principal components of CEP are
briefly introduced here and their application in the BD en-
vironment is described in the subsequent section.

2.1 Aspects of an Event

An event is an object that is a record of an activity in a
system. The event signifies the activity and as such pos-
sesses aform and may optionally yield components such
assignificance andrelativity.

Theform of an event is an object. It may have particular
attributes or data components, e.g. it may be as simple as
a string or a tuple of data components, possibly including
timestamps and other data pertaining to the event signifi-
cance and relativity.

The significance of an event refers to the activity it sig-
nifies, while therelativity of an event describes its relation-
ship with other events. The relationship between events is
usually quantified in terms oftime, causality andaggrega-
tion.

A complex event signifies an activity that takes place
over a period of time and is anaggregation of other events
which are referred to as itsmembers.

Events in a distributed system occur in a relationship of
dependencies or independencies. A set of events together
with their causal relationship is called aposet, meaning a

partially ordered set of events.
A causal event execution is a poset consisting of the

events generated by a system and their relationship; it em-
phasizes the occurrence of events and their relativities on-
line, in real time.

2.2 Complex Event Processing

Complex Event Processing (CEP) is central to any event-
driven system. A complex event can signify an activity that
consists of several activities in different parts of a distribut-
ed system. Conceptually, a complex event is regarded as an
event at an higher level than the levels of its members. In
our applications environment, a complex event often takes
the form of an high-level event that is an aggregation of
low-level hardware events, matching a certain event pat-
tern. Event pattern rules and Event Processing Agents are
the mechanisms for building CEP applications.

2.3 The Event Pattern

An event pattern is a template that matches certain sets
of events. It describes precisely not only the events but al-
so their causual dependencies, timing, data parameters and
context. An event pattern is therefore a template forposets.

Associated with event patterns areevent pattern rules.
An event pattern rule is a reactive rule that specifies an ac-
tion to be taken whenever an event pattern is matched. A
reactive rule has two parts: atrigger, which is an event pat-
tern, and abody of actions, which is an event that is created
whenever the trigger is matched.

2.4 Event Processing Agents

An Event Processing Agent (EPA) is an object that moni-
tors an event execution to detect certain event patterns. The
EPA object is constructed from event pattern rules and lo-
cal variables whose values determine its state. The EPA
monitors its input to detect instances of the rule triggers
and when a match is made executes the actions in the rule’s
body. As a result of executing a rule, the EPA changes both
its local state variables and its output event. Events that are
output depend on the class of the EPA [15]. Three proven
types are:

• Filter - reduces event executions to relevent subsets,
• Map - aggregates and correlates events,
• Constraint - detects proper or improper behaviour.

The event pattern map is the class of most relevance to
the work presented here. Maps use event pattern rules to
aggregate a poset of events into high-level events and, as
such, are the basis for defining relationships between sets
of system-level events and higher level abstraction events.
Fig. 2 shows a generic template for a map agent that ag-
gregates causal sequences of events in its input, and creates
an event consisting of a sequence of values that summarize
the aggregated data. The next section describes an imple-
mention of the EPA interface.

OutputInput

Map Agent

Map Interface Specification

Create Complex Event: Sequence Device

==> Sequence Device (Value1, Value2, ..., ValueN)

...

Device1 −> Device2 −> ... −> Device72

Trigger on low−level events: Device1, Device2, ..., DeviceN

Sequence Device(...)Device2 (Value, Mode, TS, ...)
Device1 (Value, Mode, TS, ...)

DeviceN(Value, Mode, TS, ...)

Figure 2: Event Processing Agent

3 CREATING COMPLEX EVENTS

The creation of complex events necessitates the aggrega-
tion of posets, an event pattern rule and an EPA. The newly
formed complex event contains data that summarizes the
aspects of the lower level events. Multiple views of a target
system’s activity can be constructed to run simultaneously,
driven by the same lower-level events. Indeed, it is often
the case that one cannot predict the most useful views in
advance.

Consumer

Supplier

CDEV Callback

GUI

event channel

Application layer

channel access

hardware
Low−level

Device layer

Analysis layer

Event Processing Agent

Figure 3: Data Aggregation and Propagation

Fig. 3 illustrates how control data are aggregated by an
EPA to produce a complex event containing data that sum-
marizes the aspects of lower level events. A typical EPA
uses the CDEV API to establish a callback mechanism to
the EPICS based control system. In this way, the relevant
poset is aggregated. The EPA monitors its input to de-
tect instances of the rule triggers. When a match is de-
tected (i.e. the event pattern picks out the subset of events
that signify that data transfer is complete), the agent ex-
ecutes the action of the rule’s body, causing the EPA to

change its local state variables and its output event. The
rule creates a complex event with parameters that summa-
rize the data transfer. The complex event is an higher-
level event, giving only the data required by consumers
(i.e. applications). Lower-level details, such as timestamps,
are abstracted away.

EPAs exist for the aggregation of the various types
of hardware devices, including Beam Position Monitors
(BPMs) and various magnet groups, such that the corre-
sponding event data provide a personalized view of a given
component of the control system. Two examples are pre-
sented in the following.

3.1 EPAs for BPMs

Separate EPAs exist for BPMs from the different accel-
erator facilities, namely the injectors, the booster and the
storage ring. The principal task of these EPAs is to aggre-
gate and analyze a specific set of BPM data, and to supply
the summarized results to specific event channels serving
various clients. These include the Tcl/Tk based orbit cor-
rection application [16] and the high-level Java application
responsible for the analytical determination of the effects
of the insertion devices on the closed orbit [17].

In addition, an EPA has been developed for the analysis
of the entire contingent of BPM waveforms. For the storage
ring, this constitutes 216 (sub-array) waveforms from 72
BPMs. Independent averages are calculated by the EPA,
both over the complete waveform and over all waveforms
for a given waveform element, to produce a complex event
that is supplied to the specified event channel. This latter
data is of relevance when the machine is operating in turn-
by turn mode.

It is interesting to note that the viewing of these complex
events at an high-level could be credited with the detection
of anomalies that would otherwise not have been detected
if only the low-level events were monitored. The onset of
such an high-level anomaly would initiate a trace back pro-
cedure in order to locate the cause of the problem at the
system-level.

3.2 The Tune EPA

The computer-intensive calculation of the vertical and
horizontal components of the machine tune parameter has
also been incorporated into an EPA [18]. Posets from a
dedicated Tune BPM are aggregated and when the event
pattern rule is triggered (through a data transfer complete
acknowledgement), the tune calculation is performed. A
complex event is subsequently created, the form of which
is a tuple of data containing a sequence of the measured
tune values. The EPA additionally stores the full data
complement, including that of the tune BPM waveforms,
in virtual memory space, avoiding time consuming in-
put/output operations. A dedicated Tune server provides
methods that enable a client to both regulate input parame-
ters to the tune calculation and to retrieve the full complex
of results from the virtual data store.

4 THE EVENT SERVICE

In the OMG Event Service model, suppliers produce
events and consumers receives them. Events are propa-
gated through an event channel which acts as a mediator
between the consumer and supplier. Communication is
anonymous in that the supplier does not have knowledge of
the receiving consumers. Event channels support different
models of event delivery, the type of which depends on the
collaboration between suppliers and consumers. This is il-
lustrated in Fig. 4 which highlights the push and pull mech-
anisms established between the event channel and the sup-
plier/consumer. The various push-pull permutations lead
to the four event delivery models which our now outlined.
References to Design Patterns [19] are made, where appro-
priate, following the convention of [20].

Fig. 4 further serves to emphasize that an event chan-
nel is able to fulfill all four roles simultaneously. Note
that while the flow of events is always from supplier to
consumer, the invocation of the method call, by which the
event is transmitted, can be in either direction.

Direction of event flow

event channel

consumerpull pull

push

supplier

supplier

event daemon

consumerpush ba

c d

Figure 4: The Event Models

4.1 The Canonical Push Model

The canonical push model is represented by patha→b in
Fig. 4. Suppliers push events to the event channel, which
subsequently forwards them to all registered consumers.
The supplier is thus the ‘active’ initiator of events while the
consumer is the ‘passive’ target. In object-oriented termi-
nology, the event channel is said to play the role ofnotifier
as defined by the Observer pattern [19].

4.2 The Canonical Pull Model

The canonical pull model is represented by pathc→d
in Fig. 4. A consumer sends a pull request to the event
channel which subsequently retrieves events from suppliers
and delivers them to the requesting consumer. Here it is
the consumer that is the ‘active’ initiator of events while
the supplier is the ‘passive’ target of the pull request. The
event channel is said to play the role ofprocurer.

4.3 The Hybrid Push-Pull Model

The hybrid push-pull model (‘pushmi-pullyu’1) is rep-
resented by patha→d in Fig. 4. Suppliers push events to
the event channel, while consumers pull events from the
event channel at will. Here, where both the supplier and
the consumer are active initiators of events, the event chan-
nel is said to play the role ofqueue as defined in the Active
Object pattern.

4.4 The Hybrid Pull-Push Model

The hybrid pull-push model is represented by pathb→c
in Fig. 4. Here, the event channel pulls events from pas-
sive suppliers and delivers them to passive consumers. The
event channel is said to play the role ofintelligent agent as
it is responsible for initiating the movement of events in the
system.

4.5 Event Data Form

In practise, our environment is best suited to the Canon-
ical Push model. An implementation of a push consumer
is listed in Table 1. In this model, clients subscribe to the
given event channel and passively receive data upon the oc-
currence of an event.

Event data is propagated through the Event Service sys-
tem in the form of theCORBA:Any, a container for either
built-in or user-defined data types that further holds a Type-
Code which acts as a run-time identifier of the prevailing
data type. The EPAs define a data structure into which they
store an event message and then package their data struc-
ture into aCORBA::Any. For many of the event channels
introduced in this work, an uniform data structure is used2.

4.6 Event Channels

The task of creating event channels has been separated
from the EPAs which serve as the single data source to the
event channels. Rather, a separate program that is initiat-
ed at server boot time takes on the responsibility for creat-
ing the event channels in the address space of the CORBA
Event daemon. Object references to the event channels are
exported to the CORBA Naming Service.

New event channels can be implemented on the fly by
adding entries to a configuration file and restarting the
event creation programme through a shell script that prop-
agates the appropriate options.

Typically, event channel data is grouped according to ac-
celerator components (e.g. storage ring, booster, injectors)

1“The pushmi-pullyu has no tail and a head at either end. In that way
the pushmi-pullyu can talk while eating without being rude. The pushmi-
pullyu people have always been very polite.” From Hugh Lofting’s, “The
Story of Doctor Dolittle”, 1920

2The event output class is actually wrapped in a struct, a legacy
dating to the time of our first experience with Object Request Brokers
(ORBs) [7]. Encapsulation of data into a struct was necessary in or-
der to avoid a mis-interpretation of data when passing certain primitive
types between various ORB implementations which, evidently, had not
yet reached maturity

Table 1: Implementation of a push consumer in Java
class myPushConsumer extends

org.omg.CosEventComm.PushConsumerPOA {
public void push(org.omg.CORBA.Any any) {
\\ from IDL Module: BDCDEV

\\ typedef sequence<float> SeqFloat;

if ((any.type()).equivalent

(BDCDEV.SeqFloatHelper.type())) {
float tuneSeq[];

tuneSeq=BDCDEV.SeqFloatHelper.extract(any);

}
}

}
\\ Initialisation...

myPushConsumer impl = new myPushConsumer ();

byte[] oid = ("MyConsumer").getBytes();

\\ create POA from root POA

org.omg.PortableServer.POAPackage.POA poa=...;

poa.activate object with id(oid, impl);

\\ Instantiate Consumer class

org.omg.CosEventComm.PushConsumer

consumer = impl. this(orb);

\\ Resolve Event channel Name from Naming Service

org.omg.CORBA.Object objEventCh = ...

\\ Register As An Event Channel Consumer

org.omg.CosEventChannelAdmin.EventChannel channel

= org.omg.CosEventChannelAdmin.EventChannelHelper

.narrow(objEventCh);

org.omg.CosEventChannelAdmin.ConsumerAdmin

consumerAdmin = channel.for consumers();

org.omg.CosEventChannelAdmin.ProxyPushSupplier

supplier = consumerAdmin.obtain push supplier();

supplier.connect push consumer(consumer);

and device type (e.g. magnets, BPMs). Table 2 lists a num-
ber of event channels to which various EPAs provide data.
The channel names are self-describing, giving a good indi-
cation of their general content. An exact listing of the data
being transmitted through each channel is given in [22].
Event channels (not shown in Table 2) also exist for prop-
agating data from monitored hardware devices, specified
directly by the user, and also from the TRACY accelerator
model.

5 THE EVENT HORIZON

The CORBA Event Service implements a pub-
lish/subscribe application paradigm that provides for a nat-
ural programming style in which pertinent data can be pas-
sively received by any interested client application. Certain
drawbacks nevertheless exist [21]. Publicized inadequen-
cies include the necessity (at least for all ORBs known to
the authors) to propagate event data under the auspices of
type CORBA::Any, the absense of event filtering and the
lack of explicit quality of service (QoS) control.

Table 2: Event Channels
Prefix: SLS:BdEvent:

Booster/Injectors Ring
LBinj:BPMwf RI:BPMco

LBinj:MACHCV RI:BPMcooco

LBinj:MAQ RI:BPMwfHL

BO:MACHCV RI:BPMwfprime

BO:MAQ RI:MACHCV

BO:BPMco RI:MAS

BRinj:BPMwf RI:MAQ

BRinj:MACHCV RI:TUNE

BRinj:MAQ

These limitations however did not act as obstacles in
this work. On the contrary, the restrictions imposed by
the Event Service served to define the parameters of our
design. Although the use ofCORBA::Any is unavoidable,
the choice of an uniform data structure at least results in
a less complex and more robust transmission medium. To
counteract the lack of event filtering, network traffic is min-
imized by connecting only a single supplier to a given chan-
nel. Clients interested in events from multiple sources thus
register with multiple event channels. The absence of QoS
is circumvented by imposing a queue length of a single
event, an adequate figure given that only the most recent
event is ever of interest.

Despite these simple design techniques, however, it is
acknowldeged that the Event Service is eventually to be
superseded by the Notification Service [13], which extends
the Event Service in a manner that overcomes the draw-
backs of the Event Service. In this respect, it is therefore
worthwhile to look ahead to the enhancements that are to be
offered and how they can serve to better our present event
delivery system.

6 THE NOTIFICATION SERVICE

The limitations of the Event Service have been allevi-
ated in the Notification Service3 largely through the intro-
duction of thestructured event type, which provides a well
defined data structure into which different event types may
be mapped. Fig. 5 shows the format of a structured event.
To illustrate how it serves in the capacity of event filter-
ing and configurability, as defined by various QoS require-
ments, the data structure is examined in detail.

Each event is comprised of two main components: an
header and a body. The event header consists of a fixed
part and a variable part. The fixed header includes an event
domain, event type and event name. The variable header
holds a sequence of name/value pairs, where each name is
a string and each value is of typeCORBA::Any. While in-
clusion of these variable header fields is optional and their
contents are unrestricted, the principal purpose of the head-
er is to specify event-specific QoS properties. In this re-

3The Notification Service is a super-set of the Event Service

 fd_name2

1 fd_value

ohf_namen

 fd_name1

 fd_namen

ohf_name1

ohf_name2

1ohf_value

ohf_value2

ohf_valuen

 fd_value2

 fd_valuen

Remaining

Body Fields
Filterable

Header
Variable

Header

event_name

type_name

domain_name

remainder_of_body

Header

Body

Body

Event

Event

Fixed

Figure 5: The structured event. The prefices ohfand fd
respectively refer to ‘optional header field’ and ‘filterable
data’.

spect, a set of standard optional header field (‘ohf’) names
has already been defined by the OMG groupx along with
the data types of their values. Table 3 summarizes a sub-
set of ‘ohf’ names and the data types of their asscociated
values.

Table 3: Standard optional header field
Header Field Type Examplary Values
EventReliability short 0=BestEffort

1=Persistent
Priority short −32767=LowestPriority

32767=HighestPriority
0=DefaultPriority

Timeout TimeT 0=NoTimeout
OrderPolicy short 0=AnyOrder

1=FifoOrder
2=PriorityOrder

MaxQueueLength long 10

The second main part of the structured event is the event
body which contains the contents of each event instance.
The event body is itself comprised of two components, a
filterable part and a remaining data part. As for the option-
al header fields (‘ohf’) of the event header, the filterable
component of the event body (‘fd’) is similarly defined as
a sequence of name/value pairs with each name being a
string and each value of typeCORBA::Any. The ‘fd’ fields
are defined by the user and serve to act as a tag for filtering
out data that are not required by the subscribing client ap-
plication on a per-message basis. The remaining data part
of the event header is of typeCORBA:Any and is used to
transmit the actual event data.

The filtering of unwanted events is accomplished

throughfilter objects which encapsulate a set of constraints
specified in the form of the extended Trader Constraint
Language (TCL) [23]. Afilter object may be attached to
either theproxy object, to which clients ultimately connec-
t, or theadministration object responsible for creating the
proxy interface. In the former case, only subscribers con-
nected through that interface are subject to the filter con-
straint, while in the latter case, all proxies created through
that administration object are affected.

Table 4: A structured event in Java
\\ Initialize orb

org.omg.CORBA.ORB orb

= org.omg.CORBA.ORB.init(args, null);

\\ Event domain, type and name

CosNotification. EventType eventType

= new CosNotification. EventType

(‘BeamDynamics’, ‘Tune’);

CosNotification.FixedEventHeader fixedEventHeader

= new CosNotification.FixedEventHeader

(eventType, ‘RI:TUNE’);

\\ Variable Header, name/value pairs

CosNotification.Property variableHeaderSeq[]

= new CosNotification.Property[1];

variableHeaderSeq[0]= new CosNotification.Property();

variableHeaderSeq[0].name

= CosNotification.Priority.value;

variableHeaderSeq[0].value = orb.create any();

variableHeaderSeq[0].value.insert short((short) 1);

\\ Filterable Data, name/value pairs

CosNotification.Property filterableDataSeq[]

= new CosNotification.Property[2];

filterableDataSeq[0]= new CosNotification.Property();

filterableDataSeq[0].name

= ‘horizontalTuneAmplitude’;

filterableDataSeq[0].value = orb.create any();

filterableDataSeq[0].value.insert float

((float) 0.00512);

\\ Repeat for ‘verticalTuneAmplitude’

\\ flterableDataSeq[1] = ...

\\ Event Data: Horizontal and Vertical Tunes

org.omg.CORBA.Any data = orb.create any();

\\ from IDL Module: BDCDEV

\\ typedef sequence<float> SeqFloat;

float tuneSeq[] = new float[2];

tuneSeq[0] = (float) 20.421; \\ Horizontal

tuneSeq[1] = (float) 8.734; \\ Vertical

BDCDEV.SeqFloatHelper.insert(data, tuneSeq);

\\ Pack structured event

CosNotification.StructuredEvent event

= new CosNotification.StructuredEvent();

event.header = new CosNotification.EventHeader

(fixedEventHeader, variableHeaderSeq);

event.filterable data = filterableDataSeq;

event.remainder of body = data;

Table 5: Specifying filter contraints using extended TCL
$domain name == ‘BeamDynamics’ and

$type name == ‘Tune’ and

$event name == ‘RI:TUNE’ and

$priority > 0 and

($horizontalTuneAmplitude > 0.0015 ||

$verticalTuneAmplitude > 0.0034)

Table 4 shows the incarnation of a structured event with
domain name ‘Beam Dynamics’, type ‘Tune’ and event
name ‘RI:TUNE’. The filterable component consists of two
<name, value> pairs:
<‘horizontalTuneAmplitude’, horizontalTuneAmpVal>
<‘verticalTuneAmplitude’, verticalTuneAmpVal>

Table 5 examplifies use of the extended TCL to de-
fine the filter characteristics to be embedded into the filter
object. Given this information, the event created in Table 4
would pass the filter imposed by the contraints given in Ta-
ble 5 since the event belongs to the domain ‘BeamDynam-
ics’, has both the correct type ‘Tune’ and name ‘RI:TUNE’,
exhibits a positive non-zero priority and shows an ampli-
tude for at least one component of the Tune value that pass-
es its corresponding threshold value.

The structured event thus makes it possible to distinguish
between the various event types. Suppliers or consumers
can inform the event channel of event types either by direct-
ly registering the event type, or by attaching filter objects
to the proxy and/or administration objects. In addition, s-
ince the Notification Service is always aware of the event
types that are being either published or subscribed, it can
act on this information to publish and transmit only those
events for which there are registered consumers, thereby
minimizing the network traffic. By comparison, suppliers
in the Event Service implicitly continue to publish events
even in the absense of interested clients. One purposeful
and effective use of the Notification Service (as opposed
to the Event Service) is for the dynamic logging of mes-
sages [24].

The efficiency and performance of the Notification Ser-
vice (at least for a given implementation) would first need
to be appraised. An important consideration is the speed
with which event filtering and delivery is accomplished.
How well large numbers of clients and servers are handled
will also have to be evaluated.

7 CONCLUSION

The CORBA Event Service provides the event deliv-
ery mechanism for the propagation of aggregated low-level
(and other) data to beam dynamics applications. Several
Event Processings Agents (EPAs) that act as data suppli-
ers to the CORBA event channels have been implement-
ed. The EPAs are responsible for the capture of data from
components of the low-level control system, their transfor-
mation according to predefined rules, and their subsequent
delivery to event channels. These event channels are the

primary source of information for users and are optimized
to satisfy their reporting needs.

A first examination of the Notification Service reveals
many notable features, including the ability to filter out un-
wanted data and to further publish and transmit only those
precise events for which there are interested clients.

8 REFERENCES

[1] S. Huntet al., “Status of the SLS Control System”, PSI Sci-
entific Report 1999, Volume VII, p. 32.

[2] EPICS, http://www.aps.anl.gov/epics/

[3] J. Hill, Nucl. Instr. Meth. A293 (1990) 352.

[4] N.T. Karonis, “EZCA Primer”, Argonne National Lab.,
http://www.aps.anl.gov/epics/extensions/ezca/index.php

[5] CDEV, http://www.jlab.org/cdev/

[6] OMG (CORBA), http://www.omg.org

[7] M. Böge, J. Chrin, “CORBA Objects for SLS Subjects”,
SLS Note: SLS-TME-TA-2000-0162.

[8] M.Böge, J.Chrin, M. Munoz, A. Streun, “Commission-
ing of the SLS using CORBA Based Beam Dynamics
Applications”, SLS Note: SLS-TME-TA-2001-0182.

[9] M. Böge, J. Chrin, “On The Use of CORBA in High Level
Software Applications at the SLS”, SLS Note: SLS-TME-
TA-2001-0183.

[10] M. Böge, J. Chrin, “Integrating Control Systems to Beam
Dynamics Applications with CORBA”, SLS Note: SLS-
TME-TA-2003-0225.

[11] OMG CORBA Services Specifications, http://www.omg.org
/technology/documents/corbaservicesspeccatalog.htm

[12] Event Service v. 1.2, http://www.omg.org
/technology/documents/formal/eventservice.htm

[13] Notification Service v. 1.1, http://www.omg.org
/technology/documents/formal/notificationservice.htm

[14] MICO, http://www.mico.org

[15] D. Luckham, “The Power of Events”, Pub: Addison-Wesley,
2002.

[16] M. Bögeet al., “Orbit Stability at the SLS”, PSI Scientific
and Technical Report 2004, Volume VI, p. 11.

[17] T. Schmidt, J. Chrin, A. Streun, D. Zimoch, “Feed-Forward
Corrections for Insertion Devices at the SLS”, PSI Scientific
and Technical Report 2004, Volume VI, p. 32.

[18] M. Muñoz, “Improvements to the Tune Measurement”, PSI
Scientific and Technical Report 2004, Volume VI, p. 19.

[19] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley, 1995.

[20] D.C. Schmidt, S. Vinoski, “Object Interconnections. The
OMG Events Service”, C++ Report, Vol. 12, No. 2, 1997;
http://www.cs.wustl.edu/˜schmidt/report-doc.html

[21] D.C. Schmidt, S. Vinoski, “Object Interconnections. Over-
coming Drawbacks in the OMG Events Service”, C++
Report, Vol. 12, No. 6, 1997;
http://www.cs.wustl.edu/˜schmidt/report-doc.html

[22] Event Channels, http://slsbd.psi.ch/˜chrin/

[23] Trading Object Service v. 1.1, http://www.omg.org
/technology/documents/formal/tradingobject service.htm

[24] T. Modi, “Dynamic Logging and the CORBA Notification
Service”, Dr. Dobb’s Journal, March 2001.

