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Correction of a light source’s large chromaticity while maintaining suf-
ficient dynamic aperture and momentum acceptance requires careful
optimization of the sextupole configuration in first and second order of
sextupole strength.

In this paper we try to explain chromaticity and its correction in a most
intuitive way. Accompanied by the step wise improvement of a test
lattice, the scheme is then expanded from plain correction with two sex-
tupole families to installation of “harmonic” setupole for first and second
order optimization. The approach is most visual and pragmatic on ex-
pense of the mathematical formalism which may be found in the refer-
ences.
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1 Introduction

Sextupole magnets for correcton of chromaticities are thraidating nonlinear ele-
ments in a light source lattice, because light sources alefdaulowest emittance and
thus require very strong horizontal focussing. Strong qupales cause large chro-
maticities which require strong sextupoles for compensai order to avoid single
bunch head tail instability and several multi bunch indiaés.

The parabolic field variation in a sextupole makes it an @ssnnonlinear device
which causes chaotic or unbounded particle motion beyom&sonaximum stable am-
plitude. The phase space area enclosing stable partialéateans is called dynamic
acceptance, its projection onto physical space dynamitape

Light sources require a large horizontal dynamic apertarerjection. In par-
ticular top-up operation depends on clean and efficientiiga. Light sources also
require a large momentum acceptance for sufficient beantifife: The Touschek
scattering contribution to beam life time is usually largdight sources because due
to small beam emittance the particle density in the bunclgis faising the probabil-
ity for intra-beam scattering events with large momentumngfes. Vertical dynamic
aperture is less relevant, because the physical apertiltéewather low anyway due
to the presence of low gap insertion devices. Obviouslyalss prohibits any scheme
for vertical injection. Typical requirements are abaQt . .30 mm-mrad for horizon-
tal acceptance, about . . 5 mm-mrad for vertical acceptance and abeis. . . 4 % for
relative momentum acceptance.

Thus light source design has to face the conflict between @irezgent for large
dynamic acceptance and the unavoidable presence of stooigear devices attack-
ing exactly this acceptance. It is no exaggeration to candiuis problem the most
challenging task in light source lattice design.

Apart from the sextupoles, other nonlinearities have toalzert into account, like
higher multipoles in ring magnets due to saturation or geaomienperfections, and in
insertion devices due to finite pole width and other impeites. But these nonlin-
earities can be suppressed by proper design of componentsolarance limits will
be provided based on tracking calculations. But the sex¢spto make this clear, are
nonlinerby desigrand require appropriate treatment. This is subject of thpep We
will proceed in four steps: Sec. 2 will explain how quadrigsogenerate chromaticity,
sec. 3 will show, how chromaticity is corrected with two féies of sextupoles, and
how the dynamic acceptance is destroyed. Sec. 4 will explawintroducing several
more sextupole families helps to suppress the adversdsfiddle maintaining chro-
maticity corrections and how to do it. Sec. 5 considers sgovder sextupole effects
which are also important for low emittance light sources aod/ further dynamic
acceptance optimization can be achieved.



2 Chromaticity

As sketched here, a quadrupole shows
chromatic aberrations, i.e. a variation of

focal length with momentum. Since itsw
strength is given by |
1 dB, %

2:—

(Bp) dz

with the “magnetic rigidity”
(Bp) = Z—e’ — 3.3356 Tm - E[GeV]

a function of momentum, the focussing strength varies as
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Figure 1: A double-cell (two double bend achromats out of &2he original ESRF

lattice with dispersionfree straight sections as a typlieat case for light source lat-
tices. Uncorrected chromaticity results in strong vaoiatdf beta functions with mo-
mentum.

As a consequence, the off-momentum optical functions irr@ngtfocusing lat-
tice as shown in fig.1 vary significantly from the on-momentiumctions even for
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small momentum deviations. Chromaticity is defined as thiatran of tune with mo-
mentum and derived in the most simple way as a gradient tstoio the one turn
matrix [6]:
1 0 cos2mQ [sin2w@Q \ [ cos 27er2 G sin 27Q) — X
+bydds 1 —% cos2m@ | —% cos2rQ |
The new tune is given by the half trace of the new matrix:

1 ~ ~ 1
§Tr(/\/l) = cos 27(Q) = cos 27(Q + AQ) = cos 2w + 5!)255 sin 27 Q) ds

Considering small deviations in tune, the cosine is expdrtel we obtain the hori-
zontal and vertical chromaticity, ,, by integration over all gradient distortions over
the ring:
1 A 1 7

AQ €1 — AQ=Fhdfds Gy = b =T . bals) Bup(s) ds
Both chromaticities are naturally negative, where in atligburce in particular the
horizontal chromaticity will become large in absolute \alvalues can be in the order
of £, ~ —100. Negative chromaticity must be avoided for suppressiorhefttead-
tail instability, an instable oscillation between leadeugd trailing electrons inside a
bunch with onset at very low currents [5]. Also coupled buashillations are driven
by negative chromaticity. On the other hand, a large absotatue of (negative or
positive) chromaticity, would result in a wide tune spre&the beam halo leading to
particle losses at low order resonances and thus low mommeataeptance. For that
reason, the chromaticities have to be zero or at moderaitveoslues.
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Figure 2: Variation of betafunctions and tunes with momentuithout chromaticity
correction for the lattice shown in fig.1. Note how the larggitontal chromaticity

leads to a wide tune spread extending over several integers!

Fig.2 shows the large variation of tunes with momentum dueataral chromatic-
ity. Considering that particles get lost at least at integef half integer resonances, the
momentum acceptance for the example shown would amounsgdien 0.5 % even
for very low currents. Reasonable currents couldn’t besst@nyway due to head-tail
instability.



3 Sextupolesfor chromaticity correction

The magnetic field in a sextupole

varies as
B, .
Quadrupole Lo o
BE) kSextupole By(z) =5B"x
Thus in a small range around sorhe
X - it can be considered like a quadrupole
/ N[/ X with gradient
+Do

B/(3) = B"- &

and thus adds or subtracts focussing strength dependingDispersionD as gener-

ated by a dipole magnet sorts particles by momentum:
Thus, if

Dipole Sextupole Quadrupole

T =D0o

/ and the sextupole

strength well chosen,
the chromatic aberra-
tion of a quadrupole

can be compensated:
The kick on a particle in a quadrupole, resp. sextupole isrgby

Quadrupole: Az’ = —byLx Sextupole: Az’ = —bsL(z? —y?)
Ay = byLy Ay = 2bsLxy
. 1 dB, - d? By
with by = B—p)ﬁ with b3 % (B—lp) T2

Chromatic aberrations modify the magnet strength as
b (8) = by /(1 +8) ~ by (1 — )
Adding dispersion to the beam is a transformation
xr— D+ Yy —y

Inserting these transformed coordinates into the kick #gusand keeping up to sec-
ond orders in products af, y andé gives

Quadrupole: Az’ = —byLz+[byL]dx Ay = +byLy —[bs L]0y
Sextupole: Az = —[203LD)6x —bsL(x* — y?) —bsLD?6>
Ay = +[203LD]|§y+2bsL xy

Obviously for 20, .10 = b,L the sextupole corrects the quadrupole’s chromaticity.
However there arether termxoming with the sextupoles which cause the problems
with dynamic apertures.



This simple example has to be generalized to quadrupolasaxtipolar fields
distributed around the ring. Chromaticities are then gagintegral expressions:

uty = £ F 205 D() = ba(9)] Bupy(5) ds @

Considering discrete, thin magnets, i.e. neglecting arangh of optical functions
over the magnet length, this equation can be expressed as.a su

fzp/y (:t Z n Mz /y)n 1)/1$ Z (bQL)n ﬁ(m/y)n) (2)

sext quad

Defining 2 families of sextupolesSF, SD for correction of horizontal and vertical
chromaticity, this equation can be written a8 a 2 linear system for the 2-vector of
sextupole strengthes:

i + ZneSF B:vnDn + ZneSD ﬁmnDn . (/):;L)SF
21 \ = 2nesr BynDn = Xnesp BynDn ), (bsL)sp ), 5

_ 1 [+ quaalbaL) Ben AE, )_ )
= 47 < _ZQuad(b2L) ﬁyn >1><2 [+ Agy ] — ({.iL)SF, (]»[‘)SD (3)

Here[A¢, | indicates an optional non-zero value of chromaticity to btamed from
the sextupoles. From the linear system a first recommemdhtw to place the sex-
tupoles becomes visible: All sextupoles should be at looatof large dispersion. In
order to decouple the two families, i.e. to avoid that theyamminst each other, or,
mathematically speaking, that the linear system degesgerdte SF-family members
should be located at locations of larggand low/3,, and the SD-family members at
locations of large3, and lowg,. Fig. 1 shows the placement of the sextupoles: Usu-
ally finding a good place for SF is easy, singe = x?/¢ and dispersioD = /4§
are both subject to horizontal focussing and thus behavéasinin fig. 1 the cen-
tral DBA quadrupole required for reflecting the dispersiondtion was split into two
guadrupoles and the SF-sextupole inserted between. Fgesipoles locations with
optimum conditions are hard to find: In fig. 1 two SDs are iregtet medium disper-
sion andg, slightly larger tharg,.

Fig. 3 shows the result of successful chromaticity coreectBut tracking particles
in phase space reveals how the dynamic aperture breaks dastmoan in the Poincaré
plots of fig.4: The horizontal dynamic aperture is too smalinject a beam into the
machine, also the coupling from vertical to horizontal gngficant.
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Figure 3: Variation of betafunctions and tunes with momemaiter chromaticity cor-
rection with 2 families of sextupoles: Linear chromatidigs disappeared as visible
by the horizontal tangent to the tune vs. dp/p curves, budrstorder chromaticity
remains.

4 First order sextupole optimization

The lattice with plain chromaticity emerging from the p@ws$ section would not be
able to operate, because the dynamic aperture is too smalettd a beam, and the
beam lifetime would be very short. But chromaticity correstis mandatory in order
to store significant current in the machine. So, the methazhodmaticity correction
has to be improved in order to suppress the adverse sextefiedts.

In the following we will outline a “standard procedure” ofxsepole optimization
which is derived and described in detail in refs. [2, 3, 4]:

In order to understand, what sextupole actually do to thenbaad how they de-
stroy it, and in order to find a cure subsequently, the singtégle Hamiltonian has to
be studied. In a lattice made from dipoles, quadrupoles artigoles it is given by

kinetic Dipoles Quadrupoles  Sextupoles
2 2 2
petp b by bs
H(s) = —2—Y — bad + =2 + = (2® — ) + = (2° — 3ay° 4
(s) 2110 Ll t oo+ @ -y) o = 3y)  (4)
dispersive T
focussing HQ(S) Hg(s)

The goal is finding a sextupole distribution such thh&at+ Hs becomes achromatic
while staying linear. For that purpose, the linear betawsaillation for a flat (i.e.
D = D,, D, = 0) lattice, given by

2(s) = \272 Bu(s) cos é(s) + D(s) 5 y(s) = /2], Bu(s) cos é(s) (5

is introduced into eq.4, the powers of the trigonometriccfions are turned into lin-
ear functions of multiple arguments, and the different nspde. terms with same
arguments are collected. As a result, the quadrupolefsebditHamiltonian can be
represented by a sum over different frequencies:

/ceu[HQ(S) + Hy(s)| ds =Y Pjgimp, With
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IXI < 6083 mm IX 1< 2.89 mrad 1Y1 < 56083 nm 1Y*"1|< 4[53 mrad IXI < 68415 mm

B3

“lfe 310 mrad 1YI < 54/33 mm 1Y""1|< 4.53 mrad

Figure 4: Poincaré plots of particle motion in horizontad) and vertical (green)
phase space before (left) and after (right) plain chrontgtoorrection with 2 families
of sextupoles: Without sextupoles the motion is linear dreldynamic acceptances
are unlimited. With sextupoles, nonlinear effects lead tore@akdown of dynamic
acceptances. The bright blue circles indicate the phyajpatture from an unrealistic
guadratic beampipe of 160 mm width. (Real beampipes aredipic0...90 mm
wide and20 . .. 40 mm high.)

Pjkimp o< ZnNSEX‘(bgL)nﬁ;:Tk ﬁyl;Tm DP H{i=k)ben+(1—m)yn}

n
|: itk I+m

(6)

S~Nawsa (by L), Bod und ei{(jk)¢zn+(lm)¢yn}}
p#0

This complex expression becomes more intuitive when ab-
breviating

Nisext A
h= Y V,e"™ [+...quadsfop #0.. ] Im

" Ng

The Hamiltonian modes are sums of complex vectors, "'-__
where each vector corresponds to a sextupole, its length 'Re
given essentially by the sextupole’s integrated strength

(multiplied with the optical functions at its location whics
the “lever arm” to act on the beam), and its complex phase
by the [modal multiple] of the betatron phases at its loca-

tion.
All together, nine Hamiltonian modes are found: Two of theanénzero betatron
phases, They are given by

Nsext Nquad

hllOOl - +Jx5 [ Z (2])3 [)n )).mf)n - Z (bz L)nﬂrn]
Nsext Nq'u,a,d,

hOOlll = _Jy(s [ Z (:2/)4'; L:)n‘))//nl)n - Z (b2 L)”ﬁéﬂl]

n n

Comparison to eq.2 reveals, that these are just the chraitres|
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Seven modes (and their complex conjugates) have phase engginthus they do
not add up over many turns but they will showesonantstructure: Long term be-
haviour is revealed by consideridg repetitions of the lattice structure, i.e. many cells
and many turns, and extrapolating to infinity:

S
Z hjklmpei {(G—F) 27 n Q5N 4-(1—m) 27 n Q;:/ell}

n=0

|h(j?l?:lmp|

_ |ty @
2sin7([(j — k) QM + (I —m) Q]

In particular we find modes driving
the following resonances:

ha1000 = Pia000 — Qx

30000 = hégooo — 3Q,

hio110 = hénlo — Qx

h1o200 = h81020 — Qm + 2 Qy
hioo20 = hg1200 — @z — 2y

haooo1 = hggger — 2 (.

_ % ¢
hooz01 = hggoar — 2y

0.0 0.2 0.4 0.6 0.8 1.0
Qx

These resonances correspond to forbidden lines in the tiaggadh, i.e. working

points close to these lines must be avoided, otherwisecpestwill be resonantly ex-
tracted from the beam and get lost. The last two are chrorhatidnteger resonance
drive terms and cause chromatic variation of the beta fansti

As long as the periodicity of the machine is large and nogdiities are not too
strong, there may be one or a few single resonances dongrtagrdynamics. In this
case, the calculation may be continued further by harmaxparmsion of the hamil-
tonian modes in order to obtain single resonance drive t¢ifs The traditional
approach to suppress a single or a small group of terms (wkiéing others) by
appropriate distribution of sextupoles had been provenessful in the past for sev-
eral machines. However, a very advanced light source mag/fiadlver low periodicity,
thus the tune space is densely covered with sextupolar &ed @sonances, and many
resonances will contribute to the dynamics. In this moreega@ncase, it is better to
suppress thé;x;,,,,-modes right from the beginning because they are the sofi@i o
the resonances.

This is done by adding more sextupoles, even in dispersemregions, which do
not contribute to chromaticity correction, but are sole@igtalled for mimimization of
the resonance driving modes. Four families of these — toaudilly called — “harmonic”
sextupoles are visible in the dispersion free matchingi@estn fig.1. Since each
sextupole corresponds to a complex vector, diagrams lige/shn fig. 5 can help to
suppress the resonance driving modes while keeping thenctii@ties compensated.
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Figure 5: Complex vector diagrams for the five first order sbmmatic sextupole
Hamiltonian modes. Each vector corresponds to a sextuddle.dark blue vectors
and circles mark the resulting vector surag;,,.. Left figure shows the effect of
plain chromaticity correction, right figure the situatioftea adding four families of
harmonic sextupoles.

Even after this simple manual optimiza-
T T TR tion using four additional sextupole fam-
ilies, the gain in dynamic acceptance is
impressive when comparing the result of
phase space tracking with fig. 4 (right),
which was obtained without harmonic
sextupoles.
Note, that the harmonic sextupoles are
no small correctors but of comparable

strength to the chromaticity sextupoles!
Another improvement is visible in the frequency spectra tésd particle before and

after installing harmonic sextupoles as shown in fig. 6: Aitades of peaks related to
sextupolar resonances are significantly reduced in height.

This procedure can be set up more systematic: There are Srtwbe adjusted, 2
of them real, 7 complex, which gives a total of 16 quantiteebe minimized.

. . —0 >
However, most machines have symmetry points usuallyugs’eﬂj‘:kF_F
as reference for tracking etc. Seen from such a symmetry,poi.zCELL [ CELL

every element has a mirror image of opposite betatron phase.

IXI < 4305 mm X1 3.10 mrad IY1 < 5623 nm 1Y'"1{< 4.53 mrad

Thus the complex parts cancel, and we are left with only 9 &ops, which in
principle could be solved by means of 9 sextupole families.

These equations—+£ eqs.6) are linear in sextupole strength. If there afesex-
tupole families, we get & x M linear system for the vector of sextupole strengths:

{ 3 B,S"')Dﬁ;")ei{("')%}---} - S (b3L)m p = {Z(sz)...} (8)
Ox M 1 1x9

ne{Sm} M Quad
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Figure 6: Fourier spectra of a test particle startingat y, = 4 mm, 2/, =y, =

0 = 0 and tracked over 512 turns with harmonic sextupoles swatctie(left) and on
(right). Note how the amplitude of peaks related to sextaprdsonances decrease.
Also higher order effects, like shift of fundamental tunel dmgher order resonances
are reduced significantly.

This is just a generalization of tiex 2 system for plain chromaticity correction from
eg. 3. ForM = 9 the system is quadratic and can be solved exactly)Mog 9 the
method of singular value decomposition (SVD) [9] is able ltain a solution too,
which for M < 9 returns a least square minimized approximation to the tgimd
side vector, resp. fok! > 9 selects the solution associated with minimum sextupole
strength. SVD also provides insight into the good behavaiuhe linear system by
returning a vector of weighting factors. Degeneration efslistem is indicated by the
appearance of very small weighting factors.

In fact, in particular for light sources, the system tendslégenerate, as investi-
gated in detail in ref.[3]: The horizontal betatron phaseasate per cell in a typical
light source lattice if\¢c°!' ~ 140 . .. 160° in order to obtain low emittance sec.4.4
and fig.7 in [11]). This is quite close to 18@husc??* ~ 1. As a consequence thé),
resonances driving teriin,n; becomes proportional to the chromaticgty o A11901-
This means: no sextupole pattern exists to suppress thisaied &, .

2@, resonances cause a momentum dependant bet@bgdls, which is source
of second order chromaticit§?Q,/04%. In fact, light source lattices are often lim-
ited in momentum acceptance due to large second order chioimalriving off-
momentum particles to resonances. Even after installatidmrmonic sextupoles,
second order chromaticities remain large as visible by #ralpolic shape of the tune
VS. momentum curves:

In order to avoid or cure this degeneration problem, eitlaetiqular betatron phase
relations between sextupoles have to be fixed in order toé@riodicity and sym-
metry conditions, or a distributed dispersion optics hase@hosen in order to make

11



Linear chromaticities = 0
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Figure 7: Dynamic acceptances after first order sextupoimiaption. The dotted

yellow line indicates th&(@), = 106 resonance.

all sextupoles chromatic. In any case, these measures travg smpact on linear
lattice design and layout:

Periodicity: If there areN cells, the ideal tune advances per cell would simultane-
ously makeVAQS™!, BNAQS!, 2NAQL!, 2NAQ:! integers. As an example,

this works withV = 5, AQI™" = 0.4 (= 144°), AQS™ = 0.1 (= 36°), where
144° phase advance per cell is a reasonable value for a lightedattice:

* Qb 1420 2Qut
o O

Symmetry: A lattice section vs. its mirror image may suppress,, 2Q), if the
tune advances per section are close\tge!! = 2l AQell — Zutl (n
integers). Two sections vs. their mirror also supp@ss3()... Of course this
requires fixed phase advances over the straight sectiorb wastricts the lattice
flexibility. As an example the scheme applied to the Swissitigource [4] is

sketched heren, ~ 7, n, ~ 3) :
e imEm

Dispersive straights: If dispersion in the straight sections is accepted, alsdtre
monic sextupoles become chromatic sextupoles. Thus $éamsridies add up in
chromaticity correction but may be tuned to cancel theitigbuation to the2(),,
terms, i.e. the linear system from eq.8ist degenerate! This is an advantage
of distributed dispersion lattices like SOLEIL [8], which fact achieved a very
good suppression of second order chromaticity.

—
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Singleresonance suppression: If, in the end, a single resonance is responsible for
limitation of momentum acceptance, a harmonic decomposibf the source
mode may be performed for suppression of this particulamasce. This was
successfully done for th&(), = 106 resonance crossed at~ +2% in the
original ESRF lattice (see figure on previous page) [10].

5 Second order sextupole optimization

Second order sextupole effects are due to crosstalk betsvtferent sextupoles: First
order effects perturb the linear betatron motion from edpfr.oducing the perturbed
motion again into the sextupole Hamiltonian will lead toeets of second order in
sextupole strength - and so on to even higher orders. Bbsgmttupoles can drive
resonances of any order, but the drive terms become weaktemereasing order.

In this context we should mention, thettick sextupoles, i.e. where phases and
betas vary over the length of the sextupole talk to themseive. there is crosstalk
between slices of the same magnet. But here we considertanlgextupoles.

Derivation of the (quite unwieldy) formulae is either donedecond order pertur-
bation theory [2] or by application of Lie algebra technig(i@]. Basically the second
order modes are products of the first order modes from eq.Yoelt; .., - ~jiwimy

It turns out, that there are five phase independant termspfttheem are the second
order chromaticites which already had appeared in the guevsection, and three are
the amplitude dependant tune shifts:

§(2):% §(2):82Qy 0Q, 00, :8Qy 0Q,
@ 962 v 062 aJ, oJ, O, dIJ,

Second order chromaticites limit momentum acceptance ainbgytic formulae based
on chromatic beta-functions and higher order dispersierraher lengthy, and codes
for minimizing them run more efficient by obtaining the vadideom numerical differ-
entiation of the dispersive closed orbit [3].

Amplitude dependant tune shifts lead to a twist in phaseespad subsequent
resonance overlap, and with it chaotic motion and fractalatlyic acceptance struc-
ture [7]. But a closed expression suitable for minimizaigavailable (eq.(119) in [3]
or eqg.(195) in [2]).

There are also eight phase dependant terms. Calculatirigriggerm behaviour
analogous to eq.7 reveals resonance denominators of type

(.

8sin [ - Q] sin [y’ - Q] sin[(m + n’) - @]
. . cell
rﬁ:z({_ﬂi) Q@ (g&)
y
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The third term in the denominator drives octupolar resoaanwhere the corre-
sponding mode of the octupole Hamiltonian (i.e. thst order HamiltonianH, of
octupole magnets!)i;;., is identified by

jo= G-Rh+{—F)
ko= G-k -0 —k)
[ = (—m)+ @1 —m)
o= (l—m)— (I —m')

Following resonances are found:

haoooo — 4Q. h31000 — 2 ().
hoosoo — 4 Qy haor10 — 2 (),
hao200 — 2Q. + 20y hoozio — 20,
haoo2o — 2Q. — 2Qy  hotio — 20,

0.0 0.2 0.4 0.6 0.8 1.0
Qx

Practically, optimizing the dynamic aperture in a light smulattice requires a code for
minimization of first and second order sextupole terms, aadyniterations with well
chosen weighting factors. Usually, the first order modesthadmplitude dependant
tune shifts require large weights, whereas the octupokm@nces seem less impor-
tant. The second order chromaticities turn out to be quiestige against optimiza-
tion, because their source are inappropriate phase advaeteeen lattice sections.
Of course, the chromaticities are kept constant duringmmiation by executing eq.3
after each step.

In fact, second order optimization helps to improve the brster result as proven
by increased dynamic aperture in fig. 8 (left), and furthetused tune walk with
momentum as to be seen from fig. 9 in comparison to fig. 7.

200 T dp/p = 0.000 % 500" Turns d0/p = 0.000 %

Horizontal L " Vertical v Horizontal ™ Vertical

IXI < 60p7 mm X1« 2.50 mrad 1Y < 54083 nm Y [e 4,53 mrad IXI < 60f81 am X1 |< 2,89 mrad IY1 < 58083 am 1Y'"1{< 4.53 mrad

Figure 8: Dynamic acceptance improvement by second ordeémization of 4
harmonic sextupole families (left), and further improvemafter adding small oc-
tupoles (right)

However, basically it appears unnatural and inefficientgbnoize the sextupoles
while putting most weight on thesecondorder effects. Instead octupoles could be

14



Horizontal Tune Vertical ~ Tune

3544 11.3954
35,421
35.40
35.381
35.36 1 11,380
35.34 1
35,32
35.30
35,281 11,365
32 a0 1 2

11.3904
11.3854

11.3754
11.3704

dp;p [7%1

Horizontal Tune Vertical  Tune

35,464

35 44 11.394

35.424 11.384

35.404
g 11.37 4

35.384

35.3¢6 4 11,364

35.344 T T T T 11.35

3 -2 -1 0 1 2 dD}D [ -3 -2 -1 0 1 2

dp;p [%]

Figure 9: Top figure shows tunes vs. momentum after secoret gektupole opti-

mization. Second order chromaticities could be slightgjueed compared to fig. 7,
but remain stubborn. Finally they are suppressed by ad@itioctupoles in dispersive
regions, as shown in the bottom figure: Small positive lindaomaticity was also
used, to “fold” the horizontal tune vs. momentum curve in ith@st narrow intervall

(note different scale).

applied, which attack in first order the second order sextufmms. Such a scheme
basically would set sextupoles based on eq. 8 for chromatiorrection and first or-
der cancellation, and transfer the 13 (assuming symmetrgrwise 21) second order
terms as right hand side vectors td@ax P linear system forP octupole families.
Such a scheme might be required for future, more challenkgig source storage
rings. Already blindly playing with octupoles provides prizing results as shown in
figures 8 (right) and 9 (bottom).

6 Summary

Design of a modern source lattice must not proceed by firstydiegy the linear lattice
for optimum emittance, straight length etc., but has to fake accout the sextupole
scheme right from the beginning in order to a) find suitab&ees (large dispersion,
decoupled betas) for the chromaticity sextupoles abnd expoit symmetry and pe-
riodicity for cancellation of at least some of the sextupoésonance drive terms.
Restoring dynamic acceptances to values sufficient foctige and for providing
reasonable beam life time requires installation of seviarailies of “harmonic” sex-
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tupoles which mainly compensate adverse effects from thentdticity sextupoles.
Degeneration of the configuration has to be tested and avoide

First and second order sextupole terms will be minimized lans of a suitable
code through many trials with different weighting of the elise quantities to be min-
imized. Solutions for the sextupole pattern obtained thay are only based on per-
turbation theory, thus validity for the required amplitadeas to tested by tracking
dynamic apertures. This should also include misalignmenégnet errors, and other
effects disturbing periodicity and symmetry in order towesrobustness of the solu-
tion.
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