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Correction of a light source’s large chromaticity while maintaining suf-
ficient dynamic aperture and momentum acceptance requires careful
optimization of the sextupole configuration in first and second order of
sextupole strength.
In this paper we try to explain chromaticity and its correction in a most
intuitive way. Accompanied by the step wise improvement of a test
lattice, the scheme is then expanded from plain correction with two sex-
tupole families to installation of “harmonic” setupole for first and second
order optimization. The approach is most visual and pragmatic on ex-
pense of the mathematical formalism which may be found in the refer-
ences.
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1 Introduction

Sextupole magnets for correcton of chromaticities are the dominating nonlinear ele-
ments in a light source lattice, because light sources are built for lowest emittance and
thus require very strong horizontal focussing. Strong quadrupoles cause large chro-
maticities which require strong sextupoles for compensation in order to avoid single
bunch head tail instability and several multi bunch instabilities.

The parabolic field variation in a sextupole makes it an essentially nonlinear device
which causes chaotic or unbounded particle motion beyond some maximum stable am-
plitude. The phase space area enclosing stable particle oscillations is called dynamic
acceptance, its projection onto physical space dynamic aperture.

Light sources require a large horizontal dynamic aperture for injection. In par-
ticular top-up operation depends on clean and efficient injection. Light sources also
require a large momentum acceptance for sufficient beam lifetime: The Touschek
scattering contribution to beam life time is usually large in light sources because due
to small beam emittance the particle density in the bunch is high raising the probabil-
ity for intra-beam scattering events with large momentum changes. Vertical dynamic
aperture is less relevant, because the physical apertures will be rather low anyway due
to the presence of low gap insertion devices. Obviously thisalso prohibits any scheme
for vertical injection. Typical requirements are about10 . . . 30 mm·mrad for horizon-
tal acceptance, about1 . . . 5 mm·mrad for vertical acceptance and about±3 . . . 4 % for
relative momentum acceptance.

Thus light source design has to face the conflict between a requirement for large
dynamic acceptance and the unavoidable presence of strong nonlinear devices attack-
ing exactly this acceptance. It is no exaggeration to consider this problem the most
challenging task in light source lattice design.

Apart from the sextupoles, other nonlinearities have to be taken into account, like
higher multipoles in ring magnets due to saturation or geometric imperfections, and in
insertion devices due to finite pole width and other imperfections. But these nonlin-
earities can be suppressed by proper design of components, and tolerance limits will
be provided based on tracking calculations. But the sextupoles, to make this clear, are
nonlinerby designand require appropriate treatment. This is subject of this paper. We
will proceed in four steps: Sec. 2 will explain how quadrupoles generate chromaticity,
sec. 3 will show, how chromaticity is corrected with two families of sextupoles, and
how the dynamic acceptance is destroyed. Sec. 4 will explainhow introducing several
more sextupole families helps to suppress the adverse effects while maintaining chro-
maticity corrections and how to do it. Sec. 5 considers second order sextupole effects
which are also important for low emittance light sources andhow further dynamic
acceptance optimization can be achieved.
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2 Chromaticity

As sketched here, a quadrupole shows
chromatic aberrations, i.e. a variation of
focal length with momentum. Since its
strength is given by

b2 =
1

(B ρ)

d By

d x

with the “magnetic rigidity”

(B ρ) :=
p

e
= 3.3356 Tm · E[GeV]

a function of momentum, the focussing strength varies as

b2(δ) =
b2

(1 + δ)
≈ b2 (1 − δ) δ :=

∆p

p
≪ 1

δ = +1.5 %

D

β
x

β
y
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δ = −1.5 %

δ = −1.5 %
δ = 0

δ = 0 @ 6 GeV
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Figure 1: A double-cell (two double bend achromats out of 32)of the original ESRF
lattice with dispersionfree straight sections as a typicaltest case for light source lat-
tices. Uncorrected chromaticity results in strong variation of beta functions with mo-
mentum.

As a consequence, the off-momentum optical functions in a strong focusing lat-
tice as shown in fig.1 vary significantly from the on-momentumfunctions even for
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small momentum deviations. Chromaticity is defined as the variation of tune with mo-
mentum and derived in the most simple way as a gradient distortion to the one turn
matrix [6]:
(

1 0
±b2δ ds 1

)

·

(

cos 2πQ β sin 2πQ
− sin 2πQ

β
cos 2πQ

)

=




cos 2πQ̃ β sin 2πQ̃

− sin 2πQ̃
β

cos 2πQ̃



 := M̃

The new tune is given by the half trace of the new matrix:
1

2
Tr(M̃) = cos 2πQ̃ = cos 2π(Q + ∆Q) = cos 2πQ ±

1

2
b2δ β sin 2πQ ds

Considering small deviations in tune, the cosine is expanded and we obtain the hori-
zontal and vertical chromaticityξx/y by integration over all gradient distortions over
the ring:

∆Q ≪ 1 −→ ∆Q = ∓
1

4π
b2δ β ds ξx/y =

∆Q

δ
= ∓

1

4π

∮

C
b2(s) βx/y(s) ds

Both chromaticities are naturally negative, where in a light source in particular the
horizontal chromaticity will become large in absolute value: values can be in the order
of ξx ≈ −100. Negative chromaticity must be avoided for suppression of the head-
tail instability, an instable oscillation between leadingand trailing electrons inside a
bunch with onset at very low currents [5]. Also coupled bunchoscillations are driven
by negative chromaticity. On the other hand, a large absolute value of (negative or
positive) chromaticity, would result in a wide tune spread of the beam halo leading to
particle losses at low order resonances and thus low momentum acceptance. For that
reason, the chromaticities have to be zero or at moderate positive values.

Linear chromaticities

Figure 2: Variation of betafunctions and tunes with momentum without chromaticity
correction for the lattice shown in fig.1. Note how the large horizontal chromaticity
leads to a wide tune spread extending over several integers!

Fig.2 shows the large variation of tunes with momentum due tonatural chromatic-
ity. Considering that particles get lost at least at integerand half integer resonances, the
momentum acceptance for the example shown would amount to less than 0.5 % even
for very low currents. Reasonable currents couldn’t be stored anyway due to head-tail
instability.
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3 Sextupoles for chromaticity correction

B y

x
x

B y

+ D d_

Q u a d r u p o l e S e x t u p o l e

The magnetic field in a sextupole
varies as

By (x) =
1

2
B′′ x2

Thus in a small range around somex̂
it can be considered like a quadrupole
with gradient

B′
y(x̂) = B′′ · x̂

and thus adds or subtracts focussing strength depending onx̂. DispersionD as gener-
ated by a dipole magnet sorts particles by momentum:

D i p o l e S e x t u p o l e Q u a d r u p o l e
Thus, if

x̂ = Dδ

and the sextupole
strength well chosen,
the chromatic aberra-
tion of a quadrupole
can be compensated:

The kick on a particle in a quadrupole, resp. sextupole is given by

Quadrupole: ∆x′ = −b2Lx
∆y′ = b2Ly

with b2 = 1
(B ρ)

d By

d x

Sextupole: ∆x′ = −b3L(x2 − y2)
∆y′ = 2b3Lxy

with b3 = 1
2

1
(B ρ)

d2 By

d x2

Chromatic aberrations modify the magnet strength as

bn(δ) = bn/(1 + δ) ≈ bn(1 − δ)

Adding dispersion to the beam is a transformation

x → Dδ + x y → y

Inserting these transformed coordinates into the kick equations and keeping up to sec-
ond orders in products ofx, y andδ gives

Quadrupole: ∆x′ = −b2Lx +[b2L] δ x ∆y′ = +b2Ly −[b2L] δ y
Sextupole: ∆x′ = −[2b3LD] δ x−b3L(x2 − y2)−b3LD2δ2

∆y′ = +[2b3LD] δ y +2b3L xy

Obviously for 2b3LD
!
= b2L the sextupole corrects the quadrupole’s chromaticity.

However there areother termscoming with the sextupoles which cause the problems
with dynamic apertures.
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This simple example has to be generalized to quadrupolar andsextupolar fields
distributed around the ring. Chromaticities are then givenas integral expressions:

ξx/y = ±
1

4π

∮

C
[2b3(s)D(s) − b2(s)]βx/y(s) ds (1)

Considering discrete, thin magnets, i.e. neglecting any change of optical functions
over the magnet length, this equation can be expressed as a sum:

ξx/y =
1

4π



±
∑

sext

2(b3L)n β(x/y)n Dn∓
∑

quad

(b2L)n β(x/y)n



 (2)

Defining 2 families of sextupolesSF, SD for correction of horizontal and vertical
chromaticity, this equation can be written as a2 × 2 linear system for the 2-vector of
sextupole strengthes:

1

2π

(

+
∑

n∈SF βxnDn +
∑

n∈SD βxnDn

−
∑

n∈SF βynDn −
∑

n∈SD βynDn

)

2×2

·

(

(b3L)SF

(b3L)SD

)

1×2

=
1

4π

(

+
∑

Quad(b2L) βxn

−
∑

Quad(b2L) βyn

)

1×2

[

+
∆ξx

∆ξy

]

=⇒ (b3L)SF, (b3L)SD (3)

Here[∆ξx/y] indicates an optional non-zero value of chromaticity to be obtained from
the sextupoles. From the linear system a first recommendation how to place the sex-
tupoles becomes visible: All sextupoles should be at locations of large dispersion. In
order to decouple the two families, i.e. to avoid that they act against each other, or,
mathematically speaking, that the linear system degenerates, the SF-family members
should be located at locations of largeβx and lowβy, and the SD-family members at
locations of largeβy and lowβx. Fig. 1 shows the placement of the sextupoles: Usu-
ally finding a good place for SF is easy, sinceβx = x2/ǫ and dispersionD = x/δ
are both subject to horizontal focussing and thus behave similar: In fig. 1 the cen-
tral DBA quadrupole required for reflecting the dispersion function was split into two
quadrupoles and the SF-sextupole inserted between. For SD-sextupoles locations with
optimum conditions are hard to find: In fig. 1 two SDs are inserted at medium disper-
sion andβy slightly larger thanβx.

Fig. 3 shows the result of successful chromaticity correction. But tracking particles
in phase space reveals how the dynamic aperture breaks down as shown in the Poincaré
plots of fig.4: The horizontal dynamic aperture is too small to inject a beam into the
machine, also the coupling from vertical to horizontal is significant.
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Linear chromaticities = 0

Figure 3: Variation of betafunctions and tunes with momentum after chromaticity cor-
rection with 2 families of sextupoles: Linear chromaticityhas disappeared as visible
by the horizontal tangent to the tune vs. dp/p curves, but second order chromaticity
remains.

4 First order sextupole optimization

The lattice with plain chromaticity emerging from the previous section would not be
able to operate, because the dynamic aperture is too small toinject a beam, and the
beam lifetime would be very short. But chromaticity correction is mandatory in order
to store significant current in the machine. So, the method ofchromaticity correction
has to be improved in order to suppress the adverse sextupoleeffects.

In the following we will outline a “standard procedure” of sextupole optimization
which is derived and described in detail in refs. [2, 3, 4]:

In order to understand, what sextupole actually do to the beam and how they de-
stroy it, and in order to find a cure subsequently, the single particle Hamiltonian has to
be studied. In a lattice made from dipoles, quadrupoles and sextupoles it is given by

H(s) =

kinetic
︷ ︸︸ ︷

p2
x + p2

y

2(1 + δ)
−

Dipoles
︷ ︸︸ ︷

b1 x δ
︸ ︷︷ ︸

dispersive

+
b2
1

2
x2

︸ ︷︷ ︸

focussing

+

Quadrupoles
︷ ︸︸ ︷

b2

2
(x2 − y2)

︸ ︷︷ ︸

H2(s)

+

Sextupoles
︷ ︸︸ ︷

b3

3
(x3 − 3xy2)

︸ ︷︷ ︸

H3(s)

(4)

The goal is finding a sextupole distribution such thatH2 + H3 becomes achromatic
while staying linear. For that purpose, the linear betatronoscillation for a flat (i.e.
D = Dx, Dy = 0) lattice, given by

x(s) =
√

2Jx βx(s) cos φ(s) + D(s) δ y(s) =
√

2Jx βx(s) cos φ(s) (5)

is introduced into eq.4, the powers of the trigonometric functions are turned into lin-
ear functions of multiple arguments, and the different modes, i.e. terms with same
arguments are collected. As a result, the quadrupole/sextupole Hamiltonian can be
represented by a sum over different frequencies:

∫

cell
[H2(s) + H3(s)] ds =

∑

hjklmp, with
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Figure 4: Poincaré plots of particle motion in horizontal (red) and vertical (green)
phase space before (left) and after (right) plain chromaticity correction with 2 families
of sextupoles: Without sextupoles the motion is linear and the dynamic acceptances
are unlimited. With sextupoles, nonlinear effects lead to abreakdown of dynamic
acceptances. The bright blue circles indicate the physicalaperture from an unrealistic
quadratic beampipe of 160 mm width. (Real beampipes are typically 60 . . . 90 mm
wide and20 . . . 40 mm high.)

hjklmp ∝
∑Nsext

n (b3 L)n β
j+k

2
xn β

l+m
2

yn Dp
n ei{(j−k)φxn+(l−m)φyn}

−
[
∑Nquad

n (b2 L)n β
j+k

2
xn β

l+m
2

yn ei{(j−k)φxn+(l−m)φyn}

]

p 6=0

(6)

This complex expression becomes more intuitive when ab-
breviating

h =
Nsext∑

n

Vne
iΦn [ + . . . quads forp 6= 0 . . .]

The Hamiltonian modes are sums of complex vectors,
where each vector corresponds to a sextupole, its length
given essentially by the sextupole’s integrated strength
(multiplied with the optical functions at its location which is
the “lever arm” to act on the beam), and its complex phase
by the [modal multiple] of the betatron phases at its loca-
tion.

I m

R e
F n
V n

All together, nine Hamiltonian modes are found: Two of them have zero betatron
phases, They are given by

h11001 = +Jxδ [
Nsext∑

n

(2b3 L)nβxnDn −
Nquad∑

n

(b2 L)nβxn ]

h00111 = −Jyδ [
Nsext∑

n

(2b3 L)nβynDn −
Nquad∑

n

(b2 L)nβyn ]

Comparison to eq.2 reveals, that these are just the chromaticities!
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Seven modes (and their complex conjugates) have phase arguments, thus they do
not add up over many turns but they will show aresonantstructure: Long term be-
haviour is revealed by consideringN repetitions of the lattice structure, i.e. many cells
and many turns, and extrapolating to infinity:

|h∞
jklmp| =

∣
∣
∣
∣
∣

∞∑

n=0

hjklmpe
i {(j−k) 2π n Qcell

x +(l−m) 2π n Qcell
y }

∣
∣
∣
∣
∣

=
|hjklmp|

2 sinπ[(j − k) Qcell
x + (l − m) Qcell

y ]
(7)

In particular we find modes driving
the following resonances:

h21000 = h∗
12000 −→ Q

x

h30000 = h∗
03000 −→ 3 Qx

h10110 = h∗
01110 −→ Q

x

h10200 = h∗
01020 −→ Qx + 2 Qy

h10020 = h∗
01200 −→ Qx − 2 Qy

h20001 = h∗
02001 −→ 2 Qx

h00201 = h∗
00021 −→ 2 Qy

These resonances correspond to forbidden lines in the tune diagram, i.e. working
points close to these lines must be avoided, otherwise particles will be resonantly ex-
tracted from the beam and get lost. The last two are chromatichalf integer resonance
drive terms and cause chromatic variation of the beta functions.

As long as the periodicity of the machine is large and non-linearities are not too
strong, there may be one or a few single resonances dominating the dynamics. In this
case, the calculation may be continued further by harmonic expansion of the hamil-
tonian modes in order to obtain single resonance drive terms[1]. The traditional
approach to suppress a single or a small group of terms (whileexciting others) by
appropriate distribution of sextupoles had been proven successful in the past for sev-
eral machines. However, a very advanced light source may have rather low periodicity,
thus the tune space is densely covered with sextupolar and other resonances, and many
resonances will contribute to the dynamics. In this more general case, it is better to
suppress thehjklmp-modes right from the beginning because they are the source of all
the resonances.

This is done by adding more sextupoles, even in dispersion-free regions, which do
not contribute to chromaticity correction, but are solely installed for mimimization of
the resonance driving modes. Four families of these – traditionally called – “harmonic”
sextupoles are visible in the dispersion free matching sections in fig.1. Since each
sextupole corresponds to a complex vector, diagrams like shown in fig. 5 can help to
suppress the resonance driving modes while keeping the chromaticities compensated.
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Figure 5: Complex vector diagrams for the five first order non-chromatic sextupole
Hamiltonian modes. Each vector corresponds to a sextupole.The dark blue vectors
and circles mark the resulting vector sumshjklm0. Left figure shows the effect of
plain chromaticity correction, right figure the situation after adding four families of
harmonic sextupoles.

Even after this simple manual optimiza-
tion using four additional sextupole fam-
ilies, the gain in dynamic acceptance is
impressive when comparing the result of
phase space tracking with fig. 4 (right),
which was obtained without harmonic
sextupoles.
Note, that the harmonic sextupoles are
no small correctors but of comparable
strength to the chromaticity sextupoles!

Another improvement is visible in the frequency spectra of atest particle before and
after installing harmonic sextupoles as shown in fig. 6: Amplitudes of peaks related to
sextupolar resonances are significantly reduced in height.

This procedure can be set up more systematic: There are 9 modes to be adjusted, 2
of them real, 7 complex, which gives a total of 16 quantities to be minimized.

However, most machines have symmetry points usually used
as reference for tracking etc. Seen from such a symmetry point,
every element has a mirror image of opposite betatron phase.

−Φn

−CELL  CELL

Φn

Thus the complex parts cancel, and we are left with only 9 equations, which in
principle could be solved by means of 9 sextupole families.

These equations (→ eqs.6) are linear in sextupole strength. If there areM sex-
tupole families, we get a9 × M linear system for the vector of sextupole strengths:







∑

n∈{Sm}

β(...)
n D(...)

n ei{(...)φn} . . .







9×M

·







(b3L)m







M×1

=







∑

Quad

(b2L) . . .







1×9

(8)
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Figure 6: Fourier spectra of a test particle starting atxo = yo = 4 mm, x′
o = y′

o =
δ = 0 and tracked over 512 turns with harmonic sextupoles switched off (left) and on
(right). Note how the amplitude of peaks related to sextupolar resonances decrease.
Also higher order effects, like shift of fundamental tune and higher order resonances
are reduced significantly.

This is just a generalization of the2× 2 system for plain chromaticity correction from
eq. 3. ForM = 9 the system is quadratic and can be solved exactly, forM 6= 9 the
method of singular value decomposition (SVD) [9] is able to obtain a solution too,
which for M < 9 returns a least square minimized approximation to the righthand
side vector, resp. forM > 9 selects the solution associated with minimum sextupole
strength. SVD also provides insight into the good behaviourof the linear system by
returning a vector of weighting factors. Degeneration of the system is indicated by the
appearance of very small weighting factors.

In fact, in particular for light sources, the system tends todegenerate, as investi-
gated in detail in ref.[3]: The horizontal betatron phase advance per cell in a typical
light source lattice is∆φcell

x ≈ 140 . . . 160◦ in order to obtain low emittance (→ sec.4.4
and fig.7 in [11]). This is quite close to 180◦, thusei2φx ≈ 1. As a consequence the2Qx

resonances driving termh20001 becomes proportional to the chromaticityξx ∝ h11001.
This means: no sextupole pattern exists to suppress this term andξx.

2Qx resonances cause a momentum dependant beta-beat∂βx/∂δ, which is source
of second order chromaticity∂2Qx/∂δ2. In fact, light source lattices are often lim-
ited in momentum acceptance due to large second order chromaticity driving off-
momentum particles to resonances. Even after installationof harmonic sextupoles,
second order chromaticities remain large as visible by the parabolic shape of the tune
vs. momentum curves:

In order to avoid or cure this degeneration problem, either particular betatron phase
relations between sextupoles have to be fixed in order to exploit periodicity and sym-
metry conditions, or a distributed dispersion optics has tobe chosen in order to make
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Linear chromaticities = 0

Figure 7: Dynamic acceptances after first order sextupole opimization. The dotted
yellow line indicates the3Qx = 106 resonance.

all sextupoles chromatic. In any case, these measures have strong impact on linear
lattice design and layout:

Periodicity: If there areN cells, the ideal tune advances per cell would simultane-
ously makeN∆Qcell

x , 3N∆Qcell
x , 2N∆Qcell

x , 2N∆Qcell
y integers. As an example,

this works withN = 5, ∆Qcell
x = 0.4 ( = 144◦), ∆Qcell

y = 0.1 ( = 36◦), where
144◦ phase advance per cell is a reasonable value for a light source lattice:

144o
72oy2QxQ

Symmetry: A lattice section vs. its mirror image may suppress2Qx, 2Qy if the
tune advances per section are close to∆Qcell

x = 2nx+1
4

, ∆Qcell
y = 2ny+1

4
(nx, ny

integers). Two sections vs. their mirror also suppressQx, 3Qx. Of course this
requires fixed phase advances over the straight sections which restricts the lattice
flexibility. As an example the scheme applied to the Swiss Light Source [4] is
sketched here (nx ≈ 7, ny ≈ 3) :

x2QxQ

Dispersive straights: If dispersion in the straight sections is accepted, also thehar-
monic sextupoles become chromatic sextupoles. Thus several families add up in
chromaticity correction but may be tuned to cancel their contribution to the2Qx

terms, i.e. the linear system from eq.8 isnot degenerate! This is an advantage
of distributed dispersion lattices like SOLEIL [8], which in fact achieved a very
good suppression of second order chromaticity.
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Single resonance suppression: If, in the end, a single resonance is responsible for
limitation of momentum acceptance, a harmonic decomposition of the source
mode may be performed for suppression of this particular resonance. This was
successfully done for the3Qx = 106 resonance crossed atδ ≈ ±2% in the
original ESRF lattice (see figure on previous page) [10].

5 Second order sextupole optimization

Second order sextupole effects are due to crosstalk betweendifferent sextupoles: First
order effects perturb the linear betatron motion from eq.5.Introducing the perturbed
motion again into the sextupole Hamiltonian will lead to effects of second order in
sextupole strength - and so on to even higher orders. Basically sextupoles can drive
resonances of any order, but the drive terms become weaker with increasing order.

In this context we should mention, thatthick sextupoles, i.e. where phases and
betas vary over the length of the sextupole talk to themselves, i.e. there is crosstalk
between slices of the same magnet. But here we consider only thin sextupoles.

Derivation of the (quite unwieldy) formulae is either done by second order pertur-
bation theory [2] or by application of Lie algebra techniques [3]. Basically the second
order modes are products of the first order modes from eq. 6 of typehjklmp · hj′k′l′m′p′

It turns out, that there are five phase independant terms, twoof them are the second
order chromaticites which already had appeared in the previous section, and three are
the amplitude dependant tune shifts:

ξ(2)
x =

∂2Qx

∂δ2
ξ(2)
y =

∂2Qy

∂δ2

∂Qx

∂Jx

∂Qx

∂Jy
=

∂Qy

∂Jx

∂Qy

∂Jy

Second order chromaticites limit momentum acceptance. Theanalytic formulae based
on chromatic beta-functions and higher order dispersion are rather lengthy, and codes
for minimizing them run more efficient by obtaining the values from numerical differ-
entiation of the dispersive closed orbit [3].

Amplitude dependant tune shifts lead to a twist in phase space and subsequent
resonance overlap, and with it chaotic motion and fractal dynamic acceptance struc-
ture [7]. But a closed expression suitable for minimizationis available (eq.(119) in [3]
or eq.(195) in [2]).

There are also eight phase dependant terms. Calculating thelong term behaviour
analogous to eq.7 reveals resonance denominators of type

|h∞
jklmpj′k′l′m′p′| ∝

(. . .)

8 sinπ[~m · ~Q] sin π[~m′ · ~Q] sin π[(~m + ~m′) · ~Q]
with

~m :=

(

j − k
l − m

)

~Q :=

(

Qcell
x

Qcell
y

)
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The third term in the denominator drives octupolar resonances, where the corre-
sponding mode of the octupole Hamiltonian (i.e. thefirst order HamiltonianH4 of
octupole magnets!),hĵk̂l̂m̂0 is identified by

ĵ = (j − k) + (j′ − k′)

k̂ = (j − k) − (j′ − k′)

l̂ = (l − m) + (l′ − m′)
m̂ = (l − m) − (l′ − m′)

Following resonances are found:

h40000 → 4Qx h31000 → 2 Qx

h00400 → 4 Qy h20110 → 2 Qx

h20200 → 2Qx + 2 Qy h00310 → 2 Qy

h20020 → 2Qx − 2 Qy h01110 → 2 Qy

Practically, optimizing the dynamic aperture in a light source lattice requires a code for
minimization of first and second order sextupole terms, and many iterations with well
chosen weighting factors. Usually, the first order modes andthe amplitude dependant
tune shifts require large weights, whereas the octupolar resonances seem less impor-
tant. The second order chromaticities turn out to be quite resistive against optimiza-
tion, because their source are inappropriate phase advances between lattice sections.
Of course, the chromaticities are kept constant during minimization by executing eq.3
after each step.

In fact, second order optimization helps to improve the firstorder result as proven
by increased dynamic aperture in fig. 8 (left), and further reduced tune walk with
momentum as to be seen from fig. 9 in comparison to fig. 7.

Figure 8: Dynamic acceptance improvement by second order optimization of 4
harmonic sextupole families (left), and further improvement after adding small oc-
tupoles (right)

However, basically it appears unnatural and inefficient to optimize the sextupoles
while putting most weight on theirsecondorder effects. Instead octupoles could be
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Figure 9: Top figure shows tunes vs. momentum after second order sextupole opti-
mization. Second order chromaticities could be slightly reduced compared to fig. 7,
but remain stubborn. Finally they are suppressed by additional octupoles in dispersive
regions, as shown in the bottom figure: Small positive linearchromaticity was also
used, to “fold” the horizontal tune vs. momentum curve in themost narrow intervall
(note different scale).

applied, which attack in first order the second order sextupole terms. Such a scheme
basically would set sextupoles based on eq. 8 for chromaticity correction and first or-
der cancellation, and transfer the 13 (assuming symmetry, otherwise 21) second order
terms as right hand side vectors to a13 × P linear system forP octupole families.
Such a scheme might be required for future, more challenginglight source storage
rings. Already blindly playing with octupoles provides promising results as shown in
figures 8 (right) and 9 (bottom).

6 Summary

Design of a modern source lattice must not proceed by first designing the linear lattice
for optimum emittance, straight length etc., but has to takeinto accout the sextupole
scheme right from the beginning in order to a) find suitable places (large dispersion,
decoupled betas) for the chromaticity sextupoles abnd b) toexploit symmetry and pe-
riodicity for cancellation of at least some of the sextupolar resonance drive terms.

Restoring dynamic acceptances to values sufficient for injection and for providing
reasonable beam life time requires installation of severalfamilies of “harmonic” sex-
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tupoles which mainly compensate adverse effects from the chromaticity sextupoles.
Degeneration of the configuration has to be tested and avoided.

First and second order sextupole terms will be minimized by means of a suitable
code through many trials with different weighting of the diverse quantities to be min-
imized. Solutions for the sextupole pattern obtained this way are only based on per-
turbation theory, thus validity for the required amplitudes has to tested by tracking
dynamic apertures. This should also include misalignments, magnet errors, and other
effects disturbing periodicity and symmetry in order to ensure robustness of the solu-
tion.
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