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1 Introduction

1.1 Abstract

The subject of this diploma work is the simulation of a plasm. A plasma is a gas with a very
small density composed of free charged particles (ions). An important goal is to understand
the dynamic of the particles (here protons) and the electromagnetic fields considering parti-
cle accelerators. This work is a part of the collaboration between the Swiss Federal Institute of
Technology and the Paul Scherrer Institute in Villigen. I was supervised by Peter Arbenz (ETH,
Institute of Computational Science) and Andreas Adelmann (PSI, Large Research Facilities).

The protons are located in a bounded domain which is surrounded by a perfect electric conduc-
tor (PEC). This implies that the arising electric field is perpendicular on the boundary. The
dynamic of the electromagnetic field is described by the Maxwell equations. The fields are gen-
erating forces which act on the particles and change thus the charge density p and the current
density j. The latter quantities are the origins of the fields and appear in the Maxwell equations
on the right hand side as source. Thus the task can be formulated as a boundary value problem,
i.e. as partial differential equations (Maxwell equations) provided with boundary conditions.

Boundary value problems can be treated with different methods. One historically important
method is called finite differences (FD). Required are two structured, hexaedral meshes which
are slightly displaced to each other. The values of the field is calculated on the corners of the
hexaedras. Via these values the spacial and temporal derivatives are computed in order to a
Taylor approximation. This method is the most common for electromagnetic problems. For a
long time it was the only accomplishable approach. One major disadvantage is the restriction
to very basic geometries. Accessorily, adaptive mesh refinement is provided just in a constricted
way.

Since a few decades the method of Finite Elements (FE) is an alternative. A relatively abstract
formulation provides to include arbitrary geometries and potentiates adaptive mesh refinement.
In this diploma work Finite Elements are used. A short description of this method is given in a
following section.

An american group of researchers has recently developed an FE-library called FEMSTER. The
library has been implemented in object oriented C++. It is freely available for the purpose
of research. To get a higher accuracy one can either refine the mesh (h) or one can boost the
polynomial degree (p). It is conjectured that for a given accuracy the system of equations gets
smaller in order to rise the polynomial degree. Unlike most of the Finite Element Frameworks,
in FEMSTER it is possible to select Finite Elements of any polynomial degree. An other ad-
vancement of FEMSTER is the integration of differential forms as basis for Finite Elements.
Differential forms and electromagnetic quantities have some remarkably connections. This ap-
proach is fairly recent and is promoted to a large amount by the FEMSTER group and Ralf
Hiptmair (ETH Ziirich).
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An additional quite capacious program library is IPPL (Independent Parallel Particle Layer).
Its main developer is Andreas Adelmann. IPPL provides the treatment of large amounts of
particles. A main pillar is the support of parallel computing.

The goal of this diploma work is to merge these two program libraries in such a way that
electromagnetic fields and particles can be correct described by the Maxwell equations. Given
an initial condition, the system should be evolved in order to time domain. Of course the
program is requested to run as efficiently as possible. Numerical errors should be estimated.

1.2 Aufgabenstellung und Ziel

In dieser Diplomarbeit geht es um Simulationen von Plasmen. Ein Plasma ist ein Gas mit
einer sehr geringen Dichte das aus freien Ladungstriagern (Ionen) besteht. Das Ziel ist ein
besseres Verstandnis fiir die Dynamik von Teilchen (Protonen) und elektromagnetischen Feldern
in Teilchenbeschleunigern. Die Arbeit ist ein Teilergebnis aus der Zusammenarbeit zwischen der
Eidgenossischen Technischen Hochschule Ziirich und dem Paul Scherrer Institut in Villigen. Die
Betreuer waren Peter Arbenz (ETH, Institute of Computational Science) und Andreas Adel-
mann (PSI, Large Research Facilities).

Die Protonen befinden sich in einem abgeschlossenen Gebiet das mit einem perfekt leitenden Ma-
terial umgeben ist. Dies hat zur Folge, dass die sich ergebenden elektrischen Felder senkrecht auf
dem Gebietsrand stehen. Die magnetischen Felder auf dem Rand miissen dann tangential zum
Rand sein. Die Dynamik der elektromagnetischen Felder wird beschrieben durch die Maxwell-
Gleichungen. Die Felder erzeugen Krafte, welche auf die Teilchen wirken und so die Ladungs-
dichte p und die Stromdichte j verandern. Die letzteren Grossen sind die Ursache der Felder
und stehen in den Maxwell Gleichungen als Quellen auf der rechten Seite. Die Aufgabenstellung
kann also formuliert werden durch ein Randwertproblem, das heisst durch partielle Differential-
gleichungen (die Maxwell Gleichungen), die mit Randbedingungen versehen sind.

Randwertprobleme konnen mit verschiedenen Ansitzen gelost werden. Historisch wichtig ist
die Methode der Finiten Differenzen (FD). Hier werden zwei leicht verschobene, strukturierte
hexaedrale Gitter des Gebietes benotigt. Auf den Hexaeder-Ecken werden dann die Felder
berechnet. Mit den diskreten Feldern werden schliesslich die Ableitungen mit Hilfe einer Taylor
Naherung berechnet. Diese Methode ist die bekannteste fiir elektromagnetische Probleme und
war lange Zeit auch die einzig parktizierbare. Leider sind nur sehr einfache Geometrien damit
berechenbar und Gitterverfeinerungen sind nur in beschranktem Masse moglich.

Seit wenigen Jahrzehnten ist die Methode der Finiten Elemente (FE) eine Alternative. Eine
relativ abstrakte Formulierung macht das einfachere Einbinden von beliebigen Geometrien und
eine adaptive Gitterverfeinerung moglich. In dieser Arbeit wird diese Methode verwendet. Eine
kurze Beschreibung dieses Ansatzes findet man in einem spéateren Abschnitt.

Eine amerikanische Forschergruppe entwickelte kiirzlich eine FE-Bibliothek namens FEMSTER.
Die Bibliothek wurde in objektorientiertem C++ implementiert und ist zu Forschungszwecken
frei verfugbar. In FEMSTER konnen finite Elemente beliebiger Polynom-Ordnung ausgewahlt
werden. Man verspricht sich von dieser hoheren p-Ordnung - im Gegensatz zur h-Gitterverfeine-
rung - kleinere Gleichungssysteme fir eine festgesetzte Genauigkeit. Neu im Ansatz von FEM-
STER ist, dass die finiten Elemente auf Differentialformen basieren. Die Maxwell Gleichungen
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mit diesem mathematischen Gebilde anzupacken bildet eine neue Theorie, zu dessen Entste-
hen sowohl die FEMSTER-Gruppe als auch Ralf Hiptmair (ETH Ziirich) einen grossen Beitrag
geleistet haben.

Eine weitere grosse Programm-Bibliothek ist IPPL (Independent Parallel Particle Layer). Einer
ihrer Hauptentwickler war Andreas Adelmann. Mit dieser Bibliothek kénnen grosse Mengen von
Teilchen behandelt werden. Ein wichtiges Standbein ist dabei die Unterstiitzung von parallelen
Computernetzwerken.

Ziel meiner Arbeit ist, die beiden Programm Bibliotheken so zusammen zu fiigen, dass die
elektromagnetischen Felder und Teilchen durch die Maxwell Gleichungen korrekt beschrieben
werden. Ausgehend von einer Anfangsbedingung soll das System dann zeitlich entwickelt wer-
den. Natiirlich soll das Programm moglichst effizient arbeiten. Die nicht zu vermeidenden
numerischen Fehler sollen abgeschatzt werden.

1.3 Acknowledgement

I would like to thank Prof. Dr. Peter Arbenz and Dr. Andreas Adelmann for giving me the
chance to work on such an interesting topic! I acknowledge greatfully that Prof. Dr. Rolf Jeltsch
has accepted to take responsibility for this diploma work!
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Figure 1.1: Solution of a poisson problem: monopole in a conducting cubic box

1.4 Good to know

e In general, bold letters represent vector fields or matrices whereas ordinary letters corre-
spond to scalars.

e In this text cell and element are synonyms.

Constants

As the calculations are performed for vacuum, the dielectric and magnetic properties are con-
stant. For the sake of simplicity, €y and pg are set equal to 1. This implies that the velocity of
light ¢ is equal to 1, too.

Scalar products
In the FEM often integrals over a domain 2 have to be performed. If ¢ and b are functions, we
agree on writing for the scalar product

(a,b)a ::/a-b-dx
9)
In the context of differential forms this notation is also used

(e; fa ==/Q€/\f

Bibliography
The bibliography contains all papers and books I have consulted for the diploma work.
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1.5 The finite element method

1.5.1 Variational formulation
For exemple we would like to solve the elliptic boundary value problem
—Au(z) = f(z) Vo € Q (1.1)
u(z) =0 Vz € 092 (1.2)

for a function v : R* — R in any domain 2 C R™ with boundary 02 =: ' = I'p +I'y. The finite
element method is based on the variational formulation. For that reason we multiply equation
(1.1) by any smooth test function v and integrate (by parts) the resulting equation over the
whole domain. The variational formulation reads then

Find u € V = {u € H*(Q) : u|r, = 0}, so that

(Vu, Vo)o — (%,U)F — (f,0)a YweV (1.3)
~—_—— ~—
=:5(u,v) -0 =:l(v)

s(u,v) is a bilinear form, I(v) is a linear functional. As the integral is linear, one can split the
variational formulation in integrals over parts of the domain (cells ) and sum them up.

Zsz(u,v) = le(v) (1.4)
5 5

Now the discretisation takes place as we write the functions as a linear combination of suitable
basis functions b on a reference cell.

N N
u@) = Yebi(a),  v(@) = 3 0bi(). (1.5)
i=1 1=1

The variational formulation can now be converted into several aequivalent equations

S (Yo Y wth) = (Y etn)  weT (1.6)
J i )

b %

<
ZZ’(?ZZ(ZSE([)]',I)Z')OZZZ—lz(bi)) - 0 Vo> (1.7)

b 1 J —
Z(Zsz(bj,bi)aiz—lz(bi)) - 0 Vi (1.8)

b J —
A¥(sTa® —1%) = 0 (1.9)

=
AX(sH)A(R®) - AQ®) = 0 (1.10)

=
Sa = 1 (1.11)

s* is called the element stiffness matriz. S is the (sparse) global stiffness matriz. o are the

degrees of freedom and 1 is the load vector. The so called assembly process A”() builds a global
linear system of equations. We can see now that the discretisation of equation (1.3) leads to a
linear system of equations.
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A finite element is defined by a triple (2, Py, Fx) [11] which consists of
e a geometric domain ¥ (either tetrahedron, hexahedron or prism)

e a space of functions Py, (usually polynomials, b;)

e 3 set of linear functionals on Py, the degrees of freedom Fx

Usually in the FEM, the calculations are performed on a reference element. With an additional
coordinate transformation one can get the finite element on any given element. Prisms can be
used to connect tetrahedrons and hexahedrons. Two neighbouring elements are expected to
fulfil the patch condition, i.e. the global function has to be continuous at the transition face.

Figure 1.2: Reference elements used in the finite element method

1.5.2 The boundary conditions
It remains to apply the boundary conditions.

Dirichlet boundary conditions

In a weak form Dirichlet boundary conditions are already set by the term (g—z, 'U)F from equation
(1.3) to be zero. But this is not enough. For example to force the Dirichlet boundary conditions
(1.2), several degrees of freedom i representing the boundary must be set to zero. This can
be achieved by erasing the i-th row and the i-th column of the matrix and by erasing the i-th
component of the load vector. The matrix should remain regular in order to get unique degrees
of freedom. This can be achieved by setting the i-th diagonal element to 1 (or an arbitrary
nonzero value). In the following example ay should be zero:

s11 0 s13 (o I
0 1 O 9 = 0
s31 0 s33 o I3

Neumann boundary conditions

It turns out by considering the Galerkin procedure that for applying homogeneous the Neumann
boundary conditions there is no need to modify either the system matrix nor the load vector. The
calculation of the magnetic field can thus be accomplished in a straight forward way. However,
the Neumann matrix contains more nonzero components than the Dirichlet matrix and the
system is thus more costly to solve.
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1.6 Differential Forms

The calculus of differential forms provides a cohesive and intuitive framework for computational
electromagnetism. Within this context, one can classify the various fields from Maxwell’s equa-

0— forms: ¢
ld
_2
1— forms: A—2%E H
e, 1 |
_9 _o
2 — forms: B—2~0 D—~7J
i o, L
_9
3— forms: 0 p—2-0

tions in a more informative manner than standard vector calculus (see figure above). Roughly
speaking, a differential k-form is a quantity appearing under an k-dimensional integral. The
mathematically correct definition reads as follows [7]

Definition
A differential form of degree k or exterior k-form is a mapping

w: U — AltF®R?)
w(z): (RMF — C

which assigns to each £ € U an alternating k-times linear w, i.e.
W(Viy ey Vig ooy Vigeo oy, Vi) = —W(Vi,.o o, Vi ooy Vig oo, Vi), (1.12)

For a good introduction into differential forms, see [6], [7]. The three main operators in the
calculus of differential forms are the exterior product, the exterior derivative and the hodge star
operator.

1.6.1 Properties of the operators
Exterior product A
An exterior product maps any I-form f and any k-form g to a (I + k)-form (! A Tk — Witk),
e fAg=—gNf
e (af +bg) Nh=a(f ANh)+blgAh)
Exterior derivative d
The exterior derivative maps a I-form to a (I + 1)-form (d : ¥ — ¥,
e d(f'Ag™) =dft Ag™ + (=1)'f' A dg™ (needed for integration by parts)
e d(dfY) =0
Hodge star operator x

For the particular case of three dimensional space, the Hodge star operator is an invertible linear
function that maps I-forms to (3 — I)-forms and is denoted by * : ¥ — ¥3~,
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1.7 The FEMSTER library

FEMSTER is a library which provides classes to handle the basic mathematical structure of
the finite elements (X, Pk, Fx). There is no front end included. In the following the classes are
shortly described. For a more sophisticated explanation the PhD thesis of Rob Rieben [8] can
be consulted.

Element3D

One of the triple (2,Pg,Fy) of the finite element is the geometric domain 3. The class
Element3D handles all of the information regarding the topology and geometry of ¥. In the
finite element method it is usual to use a (local) reference element 5 (see Figure 1.2). On these
cells bilinear forms are computed. In a second step the result is mapped by a local to global map-
ping r = I'(f) onto the (global) element. Often a Jacobi matrix and its determinant is needed
to accomplish the mapping. The class provides methods which calculate the Jacobi matrix and
its determinant.

Basis functions: 0-Froms, 1-Forms, 2-Forms, 3-Forms

This class implements the basis functions and its features on the reference elements. One can
choose among interpolatory and hierarchical basis functions. The underlaying polynomials are
Lagrange interpolation polynomials. Based on the theory of curl- and div- conforming function
spaces described by [5] and [11], either 0-form (¥°), 1-form (¥!), 2-form (¥2) or 3-form (¥3)
basis functions can be selected. Of course the dimension of such a space is infinite. With the
degree p of the polynomials the power of the approximation can be controlled. The number
of basis functions is proportional to p3 (see Table 1.3). Each basis function corresponds to a
degree of freedom. The class is organized such that the degrees of freedom Fx get the desired
properties (unisolvence, invariance and locality). Implemented methods are for example global
and local evaluations of the basis functions and the representation of a given function in the
basis.

polynomial degree p ‘ 1 2 3 4
# 0-form Dofs 8§ 27 64 125
# 1-form Dofs 12 54 144 300
# 2-form Dofs 6 36 108 240

Figure 1.3: Number of degrees of freedoms for a local hexahedral element

Bilinearform

As we consider the variational formulation of a differential equation, we have to perform integrals
of functions over a geometric domain. Those integrals can be seen as bilinear forms. Integrals
should be accomplished on L?(Q) functions. With help of the star hodge operator * different
integral types are possible. There are either the bilinear forms (xf, g)q and (xdf, dg)q where f
and g are from the same function space or the bilinear forms (xdf, g)q where df and g are from
the same function space. For the former exist classes such as Bilinear0Form,Bilinear1Form,
Bilinear2Form and Bilinear8Form. Implemented methods of these classes are getMassMatriz(),
getMassStiffnessMatriz()and getLoad Vector(). The latter types of integrals can be accomplished
with the aid of the classes Bilinear01Form, Bilinear12Form and Bilinear23Form. For these
classes either the ordinary or the topological derivative matrix can be received.
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IntegrationRule

To calculate bilinear forms on polynomial function spaces the Gauss-Quadrature rule proves to
be a good choice. The corresponding weights and nodes can be demanded for any polynomial
degree and for all three reference elements in this class.

Permutation

As the polynomials are evaluated on the reference elements, problems can arise in order to retain
the correct orientation on the original elements. For every reference element there exist rules for
edge, face and volume orientations expressed by sequences of the element nodes. As in the mesh
some nodes of different elements are identified, the orientation of the reference element can not
always be enforced. Because of this drawback all locally calculated matrices and vectors have
to be permuted. Every column and row corresponds to a degree of freedom. The permutation
occurs in such a way that the edge, face and volume degree of freedom are permuted separately.

Mesh3D

The diversity of the geometrical domains which can be treated has its origin in the mesh. The
mesh reader class mesh3D can handle three different element topologies (tetrahedron, hexahe-
dron, prism). It keeps information of the element types (number of nodes, number of edges, ... ),
mesh size and boundary faces. Last but not least, mesh8D provides a local to global mapping
M for each form which maps degrees of freedoms from the local indices to the global indices.
This mapping is needed for assembling global matrices and vectors.

FEMSTER provides a few mesh files for the unity cube. For every of the three element
topologies six files are available with different resolutions (see Table 3.8). The FEMSTER group
uses mainly the hexaedral elements. Complex hexaedral meshes can be generated with the
comercial program True Grid. At some places in the library I received the impression that
tetraedras have not been tested likewise as hexaedrons. So I decided to work with hexaedrals
cube files. (Even though the geometry of the cube is fairly basic, the solutions of the Maxwell
equations on that geometrical domain are not!). Nevertheless, in the beginning of the diploma
work I computed the static field (poisson problem) of a charge density in the geometry (see
Figure 5.1) with tetraedrons. The tetraedral mesh was generated by the program Netgen. As
the data format differ, I had to write a converter.

Solvers: CG and MINRES

Once the global system is assembled, it has to be solved. Delivered with FEMSTER  is also a
conjugate gradient (CG) solver class. As the mass and stiffness matrices both are symmetric
and positive definite it can be applied. The dimensions of the system matrices become usually
quite large. The matrices itself are exceedingly sparse. For this end the compressed row storage
(CRS) format is provided with another class. The CG operations are performed with BLAS
routines which are eminently efficient.

As we will see later, a saddle point problem has to be solved. The saddle point matrix is
indefinite. Thus the CG algorithm can not be employed. An adequate algorithm is the minimal
residual (MINRES) algorithm [24] which I implemented with BLAS routines in the same manner
as the CG algorithm. Later in the progress of the diploma work it turned out that the saddle
point system in our consideration can be split into two separate systems which are both positive
definite (see Appendix).



2 Electromagnetic fields

2.1 Maxwell equations

The Maxwell equations are defined in terms of the electric field E, the magnetic induction B,
the charge density p and the current density j. The dielectric displacement D and the magnetic
field H are defined by D = ¢E and B = y~'H. In vacuum the tensors €, p are the identity
mapping. The Maxwell equations (provided with PEC boundary conditions: the electric field is
perpendicular on the boundary, the magnetic field tangential) read

0B

E4+ = = 2.1
VxE+ g 0 (2.1)
oD
H-— = 2.2
V x o J (2.2)
V-D = p (2.3)
vV-B = 0.

The former two equations describe the dynamics of the fields. The divergence equations charac-
terize the static fields. Electromagnetic fields can exist in the absence of charge if they are time
dependent. They then describe electromagnetic waves. The sources of electromagnetic fields are
charge and current (moving charge).

2.2 Maxwell equations as a constraint formulation

The ansatz described in the following has its seeds in the book [12] and has been proposed in
[1]. If the divergence equations of the Maxwell equations are satisfied by the initial condition,
then these conditions are identically satisfied for all time by the dynamic equations (2.1) and
(2.2). If one could integrate the equations exactly, the dynamic equations would suffice. But as
we can just calculate approximations of the solution, full accuracy can not be achieved. As a
consequence of this fact the divergence conditions are violated. A workaround can be reached by
writing the Maxwell equations in a constraint formulation. We expand the dynamic equations
by the gradient of Lagrange multipliers A, (r, %), Ag(r, ) to force equality and add the divergence
conditions as constraints:

H
VXE+M_188—t+V)\19 =0 (2.5)
VXH—GBB—?+V/\¢ = J (2.6)
eV-E = p (2.7)

p'V-H = 0. (2.8)

The Lagrange multipliers in the dynamic equations can be seen as error correcting potentials.
The corresponding gradients are corrections to the electric and magnetic fields. In other words,
the part in E and B which does not satisfy the divergence condition is removed!
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2.3 Maxwell equations with differential forms

The Maxwell equations can be stated in terms of differential forms. Consider a domain €2 on
which ¢ and 9 are 0-forms, £ and H are 1-forms, J is a 2-form and p is a 3-form. As we
consider a perfect vacuum, € and p are equal to one and we will write x instead of % and x,.
The Maxwell equations read now

dE ++(0,H + d9) = 0 (2.9)
dH — x(B,E + dp) = J (2.10)
dxE) = p (2.11)
dxH) = 0. (2.12)

Here ¢ and 9 are Lagrangian multipliers for the constraints (2.11) and (2.12), respectively. As
perfect electrical conductors (PEC) are considered on the boundary, we have E_L0€Q and H||0f2.
The trace of both the electric and magnetic field then vanishes on the boundary. In the calculus
of differential forms this conditions can be written as proposed by Hiptmair [2]:

tonEl = 0 (2.13)
tooH = 0. (2.14)

2.3.1 De Rahm diagram

With aid of the de Rahm diagram, one can see how differential forms (corresponding to some
function spaces) transform under appliance of the exterior derivative and the Hodge star oper-
ator:

\% Vv x V- \%
0—form d 1—form d 2—form d 3—form a4 < .0
HY(Q)/R H(curl;Q2) H(div;82) L2(Q2)

N I

3—form 2—form 1—form 0—form
L2(Q) 4 H(div;2) d H(eurli)) ¢ HYOQ)/R

v V- VX

0 d
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2.4 Variational formulations

The discrete form approximations are defined as follows:

B(r,t) =Y, ¢i(t)vi(r) v;€ X, C O | H(r,t) =Y, hi(t)wi(r) w; € W), C 0!
O(r,t) =3, 0;(t)vi(r) vie X, CU | J(r,t) =, si(O)f(r f; € F, C U2
E(r,t) = ei(t)wi(r) w; € Wy, C U | p(r,t) = . pi(t)gi(r) g € GnC T3

o~
A

We would like to formulate the Maxwell equations in two second order systems where E and
H are separated.

2.4.1 Primal problem: E-formulation

Taking the derivative of equation (2.10) with respect to t yields

dO,H — %(0?E + d dyp) = 0,J. (2.15)
~
=:®
We rewrite equation (2.9) as
OH = — dE — df (2.16)

and plug it into equation (2.15). Together with the divergence condition (2.11) and keeping in
mind that do d¥ = 0, we get a second order system which is not dependent on the magnetic
field H anymore

d(*xdE) + %0}E +xd® = —0,J (2.17)
dxE) = p. (2.18)

Following the variational approach means that one has to multiply these equations by a test
function and then integrate over ). Equation (2.17) consists only of 2-form terms, equation
(2.18) only of 3-form terms. The differential forms which are well integrable are 3-forms. There-
fore, we wedge-multiply the former equation by a 1-form E’ and the second equation by a 0-form
®'. Applying the integration by parts rule to the first term of the former equation yields

(dx dE,E")q = (xdE, E')pq +(xdE, dE')q (2.19)
=0

E' has to be in the same space as E. Because of the condition (2.13) the surface integral vanishes.
The whole variational formulation now reads

(xdE,dEYq + O}*E,E)q + (xd®,E)q = —-0,(J,E)q VE € Wy
—(xE, d®')q = (p,®)q Vo' € X,
(2.20)
Sie + M;e + (MiKo)¢ =  —Li(j)
(Mi1Ko1)"e = —Lo(p)

The matrices S1 (stiffness matriz of the 1-1-bilinear form), M; (mass matriz of the 1-1-bilinear
form) and Ko (derivative matriz of the 0-1-bilinear form) are constant and do just depend on
the mesh topology. S; and M; are symmetric and positive definite. Kg; is rectangular and
maps a 0-form into a 1-form.
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2.4.2 H and B formulation

To calculate the magnetic field one can proceed in different ways. Either the same procedure as
for the electric field can be applied or the magnetic field can be received from the electric field
via equation (2.9). The latter method can be accomplished with or without a constraint for the
divergence condition of the magnetic field.

Dual problem: Variational formulation
For the dual problem we perform exactly the same way as in the primal problem: Taking the
derivative of equation (2.9) with respect to t yields

dO,E + (0} H + d 0;9) = 0. (2.21)
=:0
We multiply equation (2.10) by x and rewrite it as
O F = —dp +xdH — xJ (2.22)

and fill it into equation (2.21). Together with the divergence condition (2.12) and keeping in
mind that do dp = 0, we get a second order system which is not dependent on the electric field

E anymore
d(xdH) + %0?H +*d® = dxJ

dxH) = 0. (2.23)
Proceeding as in the primal problem we get the dual problem:
(xdH,dH )q + 0}(x,H,H)q + (xd®,H)q = (dxJ,H g VH € W},
(xH, d®')q =0 Vo' € X,
(2.24)
Sih + Mih + (M1K01)9 = Ll(d*J)
(M;Kg1)"h = Lo(0)

Until here the matrices S1, M1, Kj; are exactly the same as in the primal problem. In order to
apply Neumann boundary conditions the matrices for the magnetic field stay as they are whereas
the matrices for the electric field have to be modified in order to get Dirichlet conditions.

Get B directly from E

Once the electric field E is available, one can calculate the magnetic field directly with the aid
of the Maxwell equation (2.9). If the time derivative of B is approximated by a second order
finite difference we have

-B
At

It is obvious that the electric and magnetic field discretisations are displaced at about half a time
step. The magnetic field is now written as a 2-form. To apply the curl operator in FEMSTER,
just a curl matrix Ko has to be multiplied by the vector of the electrical degrees of freedom:

"2 o). (2.25)

bn+% ~ bnf% — At- (K12)en (2.26)
This is quite a fast procedure. One major drawback is that the calculation of B from the
temporal variation bears a low accuracy. Besides this grievance there is no divergence condition.
Nevertheless, I have implemented the B field calculation with this method to save (cpu-) time.
To get an impression of the error the accuracies of the two procedures can be appraised from
Figure 3.2.
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2.5 Field integrator

This section describes the field integration algorithm for the electric field. Starting from the
variational formulation (2.20) it is easy to see that this is a generalized wave equation. S
characterizes the second derivative with respect to space. The second order time derivative &
can be approximated by a simple leap frog scheme:

826 en+4,__2en<+_en—1

This scheme is of second order and symplectic. The variational formulation furnished with the
leap frog approximation reads

Sie o+ MEeetl L viKg gt = —L(j)

(MlKOI)Ten+1 — _LO(p) (228)

n—1 n+1

With two foregoing vectors €™, €”~" one can calculate the current vector €” . This means that
for starting the integrator one needs two initial conditions. The system (2.28) with e”*! and
#™T! on the left hand side reads Vn = 1,2, 3, ...

Mle”H + AtQ(M1K01)¢n+1 = M; [29" — e”_l} — A2 [Slen + Ly (_])] (2 29)
(M;Ko;)Tert! = —Lo(p) '
Defining ¢"+! := At2¢"1, the same system of equations can be written in matrix and vector
notation as follows

M M) () (Mot o] - agfsiet 1G]
((M1K01)T 0 ) (an+1> - ( —Lo(P) ) (230)

This is called a saddle point problem. The matrix on the left is symmetric and indefinite because
of the zero block. Keep in mind that the matrix Ky; is rectangular (not square). This system
can either be solved by an adequate solver (for example with MINRES) or the saddle point
modification (see appendix) can be applied. This modification yields two systems of equations
and an update term:

Mvitt = M, [2e" —e" 1] — A2[Sie" + Ly(j)] =:f
So¢™t! = Kgf +Lo(p) (2.31)
entl = vl _ K01<l~5nJrl

At every time step this system of equations has to be solved. Again we have posivite definite
matrices M; and Sy for which a solution should be found. This can be performed with the
conjugate gradient method. It is interesting that Sy is the Poisson matrix (i.e. the 0-form
stiffness matrix (d¥?, d0?)q). It remains to claim the Dirichlet boundary conditions which have
been discussed in a previous section. The boundary conditions should be applied to the system
(2.30). This is the same as erasing the corresponding rows and columns (as described) of M,
So, Ko1 and accomplish algorithm (2.31).
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2.6 Initial conditions

For a temporal integration of the system it is essential to know initial conditions of the electric
and magnetic field. We assume that these fields satisfy the Maxwell equations and suppose that
the fields and the Lagrange multipliers are given at time ¢t = 0:

e(0) = e p(0) = 0
h(0) = hy 9(0) = 0

As we would like to discretise the second derivative of e and h with respect to time by

826 en—|—1 — 2e™ + en—l
o At2

€= (2.32)
we need two initial conditions for each e and h. To this end an extra variational formulation
is built. In the following we show how to compute the initial conditions e~ '/2 and e'/? of the
electric field. We take equation (2.10) of the Maxwell equations, multiply it by a test 1-form E’
and integrate over the domain €:

at (*E, EI)Q = (*B, dEI)Q — (*dgo, EI)Q — (J, EI)Q
(2.33)
Mlé = (M2K12)Tb — (M1K01)(p — Ll(J)

The first order discretisation of the first time derivative (for only half time steps) can be written

as
2(e® — e 2)  2(e2 —e?)
-0
= 0ie(0) = =~ 2.34
e te( ) At At ( )
Filled in into (2.33) at time 0 and keeping in mind that ¢° = 0 one gets a variational formulation

for the initial conditions

X Met!/2 + SHMiKo)¢*? = Mie® + 5H[(M2K12)"b° — Ly (j°)] (2.35)
+4L(M; K1) et/ = +4Ly(p)
In matrix notation the last equation reads
( M; i%(Mle)) (eﬂﬁ) - (M1eo + 5H[(MK12) b0 — L1(j°)]>
+5H (M Ko1)T 0 g1z ) +5 o (p)
(2.36)

Applying the modification of the saddle point problem (see Appendix) (with ¢+1/2 := +4LgEL/2)
one has to solve the following system of equations

At .
M;vEil/2 = Me’ + 9 [(M2K12)Tb0 - Ll(JO)]

- At .
So™!/? = Ki [Mie” £ - [(MoK1o)"b° — Li ()] | - Lo(p)
eTl/2 — yEL/2 _ Kmq;il/z

The boundary conditions are applied exactly as in (2.31).
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2.7 Code fragments

Of course the whole C++ implementation can not be printed in this report. But the thread for
the field integration algorithm is shown here.

// Initializing: - read in mesh

- choose basis
- bilinear forms
- initialize permutations

- applying boundary conditions to matrices
- read in initial condition

// Assembly process: for all cells do {
getMassMatrix () ;
getStiffnessMatrix();

permuteMatrices();

assemble_global_MassMatrix
assemble_global_StiffnessMatrix

apply matrix boundary conditions

// Time integration for each time step do{

calculate new magnetic field B

//right hand side update:
R1 = M[2e_2-e_1]-deltaT**2[Se_2+L(j)]
R2 = K"T*f - L(rho)

e_2 > e_1

set vector boundary conditions

solve: Mxv =Rl

solve: S*phi = R2

e_2 = v - K+phi

write solution to file



3 Testing the field integrator

For a cube with no charge density in its interior we can expand the solution in terms of eigen-
modes, which are exact solutions. Every arbitrary solution can be expressed in terms of such
eigenmodes. These exact solutions allow us to evaluate the error made by temporal numerical
integration. Another test is to compute the frequencies (by accomplishing a discrete Fourier
transform) and compare them with exact frequencies.

3.1 Exact solutions

The eigenmodes of a cubic cavity can be split into two families: the transversal electric (TE)
and transversal magnetic (TM) modes [14].

3.1.1 Hertz vectors
With the aid of polarization potentials - the Hertz vectors - one can get solutions of the Maxwell
equations for simple but arbitrary geometrical domains. In materials the relations

D =¢E+ Pe;cta B = ,U,H + Mezt (31)

hold. In the case of vacuum P.;; and Mg, are zero and the tensors € and u are identity
mappings. In [13] the Hertz vectors Il, and II,, are defined by the vector and scalar potential:

o011,

A=

+VxM, &=-V.I. (3.2)

Plugged into the wave equations for A and @, derived by the Maxwell equations, and taking
into account a few implications leads to wave equations for IT, and IT,,

O, — ATl, = 0

O, — AL, = 0 (3.3)

which have to be satisfied in the considered domain. Once the Hertz vectors are fixed, the
electromagnetic field can be calculated by the following formulas

E = V(V-IL) - 0, — V x 811, (3.4)
H = VxoIl.+V xV xII,,. (3.5)
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3.1.2 TM- and TE-waves

To simplify matters we are considering a cube with edge length equal to one. Possible solutions
of IT, and I, for the z-direction in the unity cube are

0
I, = 0 (3.6)
Cesin(kyz) - sin(kyy) - cos(k,z) - ™!

which generate the TM modes, and
0
I1, = 0 . (3.7)
C. cos(kyz) - cos(kyy) - sin(k,z) - ™"

which generate the TE modes. These two solutions can be seen as a basis for the z component
of an arbitrary function. The wave equations (3.3) are satisfied if

ki 4k +k =k =uw (3.8)
The components of k have to satisfy the conditions
ky =nm ky = mm k, =qrm (3.9)

for some integers n, m, g € Zy. From (3.4) and (3.5) one gets the electromagnetic field by
taking the real part. Recall that a multiplication by 4 corresponds to a phase shift of 7 in the
time domain.

Figure 3.1: Interaction of three different modes: TMy19+TMgoo+TMjgo
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For the TM-waves we get!:

—kyk,  cos(kyx)sin(ky,y)sin(k,z)
E,, (x,t) = Ce cos(wt) - —kyk,  sin(kgyx) cos(kyy) sin(k,2)
(k3 4+ k7) sin(kyz) sin(kyy) cos(k,z)
(3.10)
(k22)
(k2z)

+ky  sin(kgz) cos(kyy)
H,, (xt) = Cuwcos(wt+7F) - —ky  cos(kyx)sin(kyy)
0

COSs
COSs

(a) TM119 mode (b) TM111 mode

(C) TM120 mode (d) TM112 mode

'Surface colours and red arrows: electric field. Yellow arrows: magnetic field
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3.1 Exact solutions

For the TE-waves it holds

3)

Crw cos(wt +

ETE (X, t)

(3.11)

(wt)

COS

Cm

)

H,, (x,t

TE111 mode

(f)

(e) TEo11 mode

(h) TE112 mode

(g) TEo12 mode



3.2 Electromagnetic Energy 24
3.2 Electromagnetic Energy
The electromagnetic field energy density is defined as
1
Wem = 5 % (E? + *B?) (3.12)
As E(x,t) = >, e;(t)w;(x), it follows for the overall electric energy in the domain
1 1
We = §(EaE)Q = §(Zeiwi,zejwj)g (3.13)
i J
1
= §Zeiej(w,~,wj)g (3.14)
(¥
1 7
= 3 M;e (3.15)
With (3.10) we get the electrical field energy density for TMy,;,, modes by
1 2
We = = E“dx (3.16)
2 Jio,up2
c 9 2, .2 2
= Tgwmnq(m + n7) + cos”(Wmngqt) (3.17)

For the magnetic field energy density one gets the same amplitude as for the electric field. The

phase is shifted such that the total energy density is conserved.

Wy = 1 / H?dx
2 [0’1]3
2

C T
_ e 2 ( 2 2) 2( )
= T6 Wng(m” +n%) - cos™(Wmngt + 9
0.14
Iz It ‘ ‘l ‘ ! ‘ /J
\ \
N /\‘ I I A
0.12 1} \ [ N Iy R I o I n —
[ A I A I A [ [\ [ A
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. i | | | [ i [ 1 —
2z 0.1 | I I [ [ [ [ I [ I
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| | | | I I I
g 0.08 AT A T O T O VY VN Y VA VA —
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electric energy density

magnetic energy density ------

Figure 3.2: Electric and magnetic energy density

(3.18)

(3.19)
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3.3 Fourier transformation

Electromagnetic fields can be decomposed in terms of plain waves e’*T~%! This can be done
by the use of the Fourier transform. The transform can be accomplished either by means of the

wave vector k

E(r,t) = 27) %2 [ A(k)ekT &gk (3.20)
R3

or by means of the angular frequency w
B(r,t) = (2r)/2 / Aw) kT, (3.21)
R

In computational science a fast version of the discrete Fourier transform (FFT) is usual. E(r,t)
is sampled at aequidistant points with spacing A (either spacial of temporal). The FFT is then
performed as follows:

n—1 )
Ap =3 Bje %, n =24, (3.22)
=0

Due to Nyquist’s critical frequency f. = i, A, embrace aequidistant values in [—f, f.]. For
the cavity problem one could resolve the distance between two faces. As the resolution of FE;
gets higher, larger wave numbers appear in A4,. But the spacing of A4, is always the lowest
wave number. If, instead, one would like to get a better resolution in the transformation A,, one
proceeds by sampling E; at more times.

3.3.1 Testing the spectrum of the unity cube cavity

The exact eigenfrequencies of the unity cube depend on the integers n,m and ¢ from (3.9) and

are
27 frng = Wnmg = V1% +m? + ¢2. (3.23)

The FFT has been performed for a random initial condition in the unity cube cavity. The
spectrum is shown in the figure below (in units of 2f).

Spectrum of a random initial condition in the cube

9e+08 I I

I
8e+08 |- FFT of random field B

Te+08 — —
6e+08 — —
5e+08 — —

4e+08 — —

Spectral rate

3e+08 — —
2e+08 —

i
0 l N Jli ““. bl Il‘ AR J.\‘ Lo el a
5

10 15 20

Frequency
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The polynomial degree of the basis function has been set to p = 2. 40’000 FE integration time
steps have been accomplished with a time increment of 0.005 on a hexaedral mesh with 512 = 83
cells. In a periodical interval of a few steps the components of the electric field are taken at
different locations in the cube.

Spectrum of a random initial condition in the cube

9e+08
8e+08 —
Te+08 —
6e+08 —
5e+08 —
4e+08 —
3e+08 —
2e+08 —
le4+08 !

I I

Spectral rate

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
1 l
| |
A A

Al
1 1.5 2 2.5 3 3.5 4

Frequency

Exact frequencies —----- FFT of random field

The calculated frequency peaks coincide quite well with the exact delta peaks. This is an
indication that wrong frequencies do not arise during the integration. This fact argues for the
integration method.
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3.4 Errors

3.4.1 The Lagrange multiplier

As there are no particles up to now the divergence of both the electric and magnetic field should
vanish. Then, for an exact solution of the Maxwell equations the Lagrange multiplier is zero
in every position. To this end the Lagrange multiplier is an indicator for the error made by

lagrange_multipiler_PhiTiide

5.74e-09

2.77e-09

-1.96e-10
-3.16e-09

-6.13e-09

Figure 3.3: The colours on the plane correspond to the Lagrange multiplier and are thus indi-
cators for the local error

numerical temporal integration. Figure 3.3 shows that the local absolute value of the Lagrange
multiplier is less than the solver accuracy (norm of residual) which for this simulation is 1078.

Another property of the Lagrange multiplier is that the divergence bearing part of the field
is eliminated. The calculated solution is therefor always a solution of the Maxwell equations.
Without Lagrange multipliers this wouldn’t be the case. To show the improvement of the

0.004 I I
without LM ———

0.0035 |- with LM ———

0.003
0.0025

0.002

IAE]]2

0.0015

0.001

0.0005

Figure 3.4: ||Ecz — Ecompl|2 for runs with and without Lagrange multiplier



3.4 Errors 28

method I have performed two runs with the TM;19 mode - first with Lagrange multipliers and
then without - and plotted the Lo-norm of the error (see Figure 3.4).
It is nice to see that the LM-solution shows a lower error norm as the ordinary solution.

3.4.2 Limits for At

Next, the performance of the field integrator should be tested for different time steps At. On
the basis of this behaviour further tests for different modes and for varying the mesh size h and
the polynomial degree p can be accomplished.

Upper limit

In order to get stable solutions there is an upper limit for A¢. In [10] the first equation of
algorithm (2.31) is considered (called the central difference discretization) in an iterative sense.
With the theory of discrete system analysis a condition on At for convergent iterations is derived

and reads
2

\% /\maz '

Amaz 18 the spectral radius of M;lsl, that means the largest eigenvalue of the generalized
eigensystem

At <

(3.24)

Slx == )\Mlx. (325)

Even though the stability condition is predicted for a central difference discretization without
additional Lagrange multiplier, it is true for (2.31) in a generous scale. I have calculated the
largest eigenvalue for a cube mesh with 64 cells and polynomial degree p = 3 with Matlab to
Amaz = 0.023. With this parameters Matlab had some difficulties with reading the matrix file
(size: 45 megabytes). For higher degrees or finer meshes this matrix export would be infeasable.
Then the estimation of the largest eigenvalue has to be in the C++ program itself. It can be
accomplished by a modification of the Lanczos algorithm. I would have done this if I had had
more time. An interesting question then could be answered: how does A4, depend on the
mesh?

0.0018
0.0016 L | dt=0.02 ———
' dt=0.01 ——
0.0014 — — dt=0.005
| dt=0.003 ———
0.0012 |- n
|.h I‘l dt=0.001 ———
= 0.001 [ yl” | —
g ‘
a 0.0008 | | —
0.0006 — o —
0.0004 — _
0.0002 I' ha ‘ ' ‘ %
o B2 Y I A S
0 1 2 3 4 5 6 7 8

Time

Figure 3.5: ||Ecgact — Ecompll2 for different time increments (TM110 mode, 64 cells)
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Lower limit

I tested the stability condition (3.24). As expected, for At = 0.04 the algorithm diverged (after
3 steps). For a series of error calculating runs I have chosen At in the interval [0.001,0.02].
Simulated is the TM11¢ mode with a period of v/2 and p = 3. The absolute errors of these runs
are shown in Figure 3.5, the relative errors in Figure 3.6. It is an interesting fact that in order
to keep the error small, At possesses an optimal value. As At gets smaller than this value the
error begins to wiggle. I am not sure what the cause for this behaviour is. I guess that it has to
do with the solver accuracy. A test with A¢ = 0.003 and a modified solver accuracy (from 108
to 10~ '2?) approves that the wiggling vanishes. Anyway, the Lagrange multiplyers stay regular
for all time increments as Figure 3.7 shows.

100
i dt=0.02 ———
10 b 7 dt=001 ——
F 4 dt=0.005
L 1 dt=0.003 ———
F 1 dt=0.001 ——
Ao - .
Sy 1 = —
ag 01 ¢ ]
0.01 .
0.001 | .
0.0001 | [ bl I S | [ [ l
0 1 2 3 4 5 6 T 8
Time
. AE . o
Figure 3.6: HII E”|2|2 for different time increments (TM110 mode, 64 cells)
2.5¢-08
dt=0.001 ———
dt=0.003 ———
2e-08 |- dt=0.005
dt=0.01 ———
1.5e-08 di=0.0% Smmm—"
a
=3
le-08 |
5e-09 —
0

Figure 3.7: ||®||2 for different time increments (TM110 mode, 64 cells)
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3.4.3 Different modes

Now we are considering runs for different modes. The time increment is assigned to be At = 0.01
and the polynomial degree is set to p = 3 (which is the first nontrivial degree concerning
some properties of the degrees of freedom). The mesh is again the one from the previous runs
(hexaedral mesh for the unity cube with 64 cells). It is obvious that the error (absolute and

[|FPez — Ecompl||2 for different time increments (TM110 mode, 64 cells)

0.025 T T T T T T T
TM110
TM120
0.02 — —IT™M220
TM130
0.015 | _
ﬁ
g
<
= 0.01 _
0.005 |- -
. y WAVAV/ \
e e et i I\’M
0 1 2 3 4 5 6 7 8

relative) grows rapidly for higher modes. On the one side this has to do with the higher frequency
(see (3.23)). The signal is then modified faster and the temporal resolution gets worse. On the
other hand the energy density depends on the square of w whereby errors grow as well. Whether
the accuracy satisfies the needs, will be seen when simulating particles. Particles are exiting
plenty of modes. We can still hope that the higher modes possess a lower amplitude.

“||AEE|‘| !2 for different time increments (TM110 mode, 64 cells)
100 £ : ‘ : : : ‘ ‘ .
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3.4.4 hp-FEM

The quality of the finite element approximation can be improved by either refine the mesh with
elements of a smaller diameter h or by rising the polynomial degree p of the basis functions.
In both cases the number of total degrees of freedoms rises extremely rapid (consider the table

below).

Mesh size h Polynomial degree p
h  # cells 1 2 \ 3 \ 4
91 3 27 125 343 729
54 300 882 1’944
92 64 125 729 2’197 4’913
300 1’944 6’084 13’872
93 5192 729 4'913 15’625 35937
1’944 13’872 45’000 104’544
94 4096 4’913 35’937 117649 274’625
13’872 104’544 345’744 811°200
25 39768 35’937 | 274625 912’673 2'146°689
104’544 | 811°200 | 2709792 | 6'390°144
96 962144 274’625 | 2°146°689 | 7’189°057 | 16’974’593
811°200 | 6°390°’144 | 21°455°424 | 50’725’632

Figure 3.8: Number of total degrees of freedom for a unity cube in terms of p and h

It is important to know how the computed errors depend on p, h and the time increment
At. The FEMSTER group observed that the Helmholtz equation (eigenvalue problem) could
be solved more efficiently for a given error by rising p (instead of lowering h).

This behaviour should also be the case for FETD as the system to be solved is similar. My
own evaluation of the hp-dependent behaviour of the accuracy is in progress. Because of lack of
time no plots are given here. It is to append that for 512 cells and p = 3 already a lot of memory
is allocated and the computer is allready behaving unacceptably slow (cpu: 3GHz, memory:

1GB).



4 Particles

As there were many more problems to be solved than expected in the beginning in order to
implement the field integrator, there was a lack of time to implement the particles completely.
At the editorial deadline unphysical effects can be observed at the transition of a particle from
one local cell to the neighbouring cell.

4.1 A particle integrator: Velocity Verlet

For the sake of simplicity I have used a particle integrator which I have utilized allready in a
semester work: the Velocity Verlet algorithm. The Velocity Verlet algorithm is an improvement
to the Verlet integrator inasmuch the forces are calculated allready with the updated positions.

~ At
vV o= vp1+ —fh
2m
r, = Tr._1+Atv
(4.1)
£, = F(rn) = Q[E(rn) +v x B(rn)]
A
v, = V+ —tfn
2m

4.2 Cooperation of FEMSTER and IPPL

Once IPPL was linked to FEMSTER, two major adaptions had to be implemented: supply each
particle with its fields and calculate the terms Ly (j) and Lg(p) from the right hand side of (2.31).
As the particles can be seen as infinitesimally small, j and p become delta functions. For the
delta distribution we have

/Q 5(x — x') f(x)dx = F(x!). (4.2)

I have reimplemented the FEMSTER routine computing the load vectors. This new routine for
the delta function in not yet properly tested. Maybe a weight, depending on the position and
analogous to the Gauss quadrature weights, is missing.

In [12] it is suggested that for certain configurations it is not necessary to update the particles
for every time step of the field integrator. This should be taken into account when my diploma
work program is used to develop particle traces.

Another difficulty is to find valid initial conditions of suddenly appearing and moving parti-
cles. In the program either the zero-field or the static solution (Poisson problem) can be chosen
as initial condition. For a suddenly generated current an electromagnetic wave loosens itself from
the particle. The propagation of this wave can yet be obtained with a visualization program
called ParaView. For a moving particle a close divergence field and a far curl field is identifiable.



5 Conclusion

5.1 Review

The goal of this diploma work was to merge the finite element library FEMSTER and the parti-
cle framework IPPL to a Finite-Element-Time-Domain particle tracking program. The particles
were asked to follow relativistic laws. The full set of the Maxwell equations should be incor-
porated. FEMSTER is based on a calculus using differential forms and provides higher order
finite elements. To integrate the particles a simple leap frog scheme is designated. The program
is desired to be validated and benchmarked. Different geometrical domains should be tested.
Finally some ideas were asked to be developed for parallelizing the program.

First of all T decided to treat the time domain integration of the fields without any parti-
cles. After reading a lot about differential forms, FEMSTER, FETD and solvers I began to put
up the variational formulation. After treating some static problems with FEMSTER, (Poisson
problem) first steps could be made for implementing Assous’ approach [1] with Lagrange mul-
tipliers. In the beginning I solved the resulting saddle point problem with an own implemented
MINRES algorithm. Later on Peter Arbenz suggested to treat the problem with the saddle point
modification (described in the appendix). But as was not exactly clear weather the approach is
applicable or not and as I didn’t know that the assembling process of the derivative matrix K
differs from assembling other matrices, much time passed by having an integrator which did not
converge! Once the modified saddle point problem was understood, the correct implementation
became easy. To visualize the data I wrote a function which generates files in the VTK format.
These files can be visualized with the program ParaView. Then the field integrator had been
tested - with success! The spectrum, calculated with an FFT, contains the correct frequencies
and errors do behave as expected. The Lagrange multiplier approach is applicable for this topic.
Then, remaining time had become marginal. I tried to include the particle framework IPPL.
Two major innovations had to be done: provide the particles with its fields E and H (FEMSTER
— IPPL) and provide the field integrator with the distribution of charge density and current
density (IPPL — FEMSTER). As particle integrator a Velocity Verlet has been chosen. This
integrator works well. The particles are not yet implemented in terms of the relativistic laws.
There is still a bug in the code as one can see in the generated movies. For particles close to
the local cell interfaces unphysical electromagnetic waves are generated. On the other hand this
unintentional radiation is propagating correctly.

Because of lack of time geometrically complex domains could not be studied. Likewise, ideas
for parallelizing the whole program could not be developed. But an ab initio assumption can
be made: TPPL is already fully parallelizable and the main functions of FEMSTER use BLAS
routines. It should thus be possible to parallelize the code (e.g. using TRILINOS).
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Figure 5.1: A tetraedral mesh of a possible geometrical domain 2 of a particle accelerators

5.2 Future work

This diploma work builds the foundation for a proceeding project (PhD thesis). In a few years
at PSI a new particle accelerator is going to be built. For designing such a machine an FETD-
particle tool is needed. On the way to a powerful program, many additional features have to be
appended. Only a short list of what is to do reads:

Analyzation of particle solutions

Allow absorbing boundary conditions

Involvement of tetrahedras

Implement the hp-FEM

Parallelization

By the way, questions could be answered for which I had not enough time:
e How does Apqp from equation (3.24) depend on the given mesh?

e What is the reason for the error wiggling as At gets very small?



6 Appendix

6.1 Modification of the saddle point problem

As we have seen in the Section 2.5, we need to solve the saddle point problem

(er ) ()= (&) o

Because of the 0 block the matrix from above is symmetric and indefinite. That means that the
conjugate gradient algorithm can not be applied.

We define C := MK and S := C'K = K"MK (for any symmetric, positive definite M and
for an incidence matrix K). Then the matrix from (6.1) can be expressed as

(o o) =G D 96 T) o2

I K
( M ) = x (6.3)
w 0 I y
equation (6.1) can be written as

(0 ) ()= er 1) (&)~ (s-ere) 60

This system of equations is equivalent to the following two systems of equation plus a correction

With the definition

Mv = f (6.5)
Sy = K'f-alg (6.6)
x = v-—Ky. (6.7)

If K is the derivative matrix of the 0-form (i.e. the gradient matrix), it turns out (after inte-
grating by parts) that S is the stiffness matrix of the O-form (i.e. the Poisson matrix). The two
new systems of equations are positive definite and can be solved by applying the CG method.
The gain of efficiency is discussed in the next section.

6.2 Numerics of the modified saddle point problem

There were times when I didn’t know about the saddle point modification. So I tried to solve
equation (6.1) directly with the MINRES algorithm. As with the procedure of applying boundary
conditions nonzero elements arise on the diagonal of the matrix (see figure 6.1), there is room for
hope that the overall matrix is not indefinite anymore and that the CG method converges. For
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Figure 6.1: The global matrix of a hexaedral 64 cell grid of a cube with Dirichlet boundary
conditions. The nonzero components in the lower right block appear as a result of
applying Dirichlet boundary conditions to the matrix. Only 1.8 % of the components
are NONZeros.
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a random initial condition (64 cells,p = 3) I have analyzed the convergence behaviour with both
the MINRES and the CG method. The error received with the MINRES converges smoother and
faster than the CG error (see next figure). It is important to mention that here the components
of the MK and (MK)” blocks are multiplied by At as in equation (2.35) (instead of joining At
with ¢).

Solvers for saddle point problem (with At): CG vs. MINRES

1000 T T T T l
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The next figure shows the convergence behaviour for the right hand side coming from a
TM119 mode with the same system matrix (Figure 6.1). Here At is not included in the matrix.
Now the convergence rate is much better. The error line of the MINRES defines a lower bound
for the CG error.

Solvers for saddle point problem (without At): CG vs. MINRES
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Now we consider the convergence behaviour for the saddle point modification (2.31). Instead
of one system of equations two have to be solved. But as can be seen by comparing the number
of iterations the saddle point modification is 5 times more efficient! Solving the second system
of equations (Spox = b) requires only two iterations for this special parameterization but is in
general dependent on the problem size. It has to be mentioned that this grid is fairly basic and
the simulated mode is well behaving.

Solving Mz = b and S°z = b with the CG method

0.01 I ‘ ‘ :
0.001 solving Mlz = b
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1le-07 —
1le-08 —
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1
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6.3 The problem of assembling Ky

Applying the saddle point modification to (6.1) requirs that C = MK in a global sense (M is the
same matrix as the upper left block of the saddle point matrix). From an other point of view one
could argue that the matrix C has to be assembled from local element matrices C* = M*K?>
(where ¥ symbolizes the element). For the assembling process we use the notation C = Ax(C%).
Incorporating both considerations yields the condition

As(M* . K¥) = Ax(M%) - As(K®). (6.8)

If the assembling process of K were the same as the one of M - namely summing up the
local element matrices - then it is easy to show that the claim (6.8) can not be satisfied! It took
a long time until I recognized (by an aspicious hasard) that the assembling procedures of K and
M differ. Many divergent runs had been performed until then and much desperation spread
out.

The following compilation shows that if K is overwritten by the local matrices K*, claim
(6.8) holds true:

e M;() is the local to global mapping for 1-forms.
M7 () is the global to local mapping for 1-forms.

e Mj() is the local to global mapping for 0-forms.
My () is the global to local mapping for 0-forms.

Mun = AsMma = X MY o
Kon = AsB¥mn = WK o,
— Cy, = As(M¥.K¥);; = ZkMEk'KMI(k)’Ml(j)

Cipn = As(C¥)mn = ZCZ L) Mo )
= ZZM tm) e~ B (), Mo(Mg 1 (n)
= ZZMM;l (mye " EMi(k)m
= ZZME Yk " EMi(k)n

= Z Mo M (k) - Bry () m
k

= Z M, my M0y By (it (k)
K=M;(k)

= Z Mm,IC : KIC,n
K

—  C=As(M”-K) = As(MP) - A5 (K) (6.9)
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