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Minimum emittance superbend lattices ?

Minimum emittance

The minimum emittance obtainable from ahomogenous (i.e. constant longitudinal
field) bending magnet with full deflection angleΦ and full lengthL is given by

ǫTME[nm·rad] = K
Φ3
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√

15
, with K := 1470

(E[GeV])2

Jx

(1)

if horizontal betafunction and dispersion in the magnet’s center are adjusted accord-
ing to the constraints

βxo =
L

2
√

15
ηo =

h L2

24
(2)

Hereh = 1/ρ = Φ/L is the magnet’s curvature.

As first suggested by A. Wrulich in 1992, later elaborated analytically by R. Na-
gaoka [2, 3] and numerically by J. Guo and T. Raubenheimer [1], a bending magnet
with longitudinal field variation may provide an emittance significantly below the
minimum emittance of a homogeneous bending magnet:

The equilibrium emittance in a flat (i.e. no vertical bends) storage ring is given
by

ǫ = K
I5

I2

(3)

with the synchrotron integrals

I2 =
∫

h(s)2 ds and I5 =
∫

h(s)3 H(s) ds

whereh(s) is the local curvature of the magnet and

H(s) = γx(s)η(s)2 + 2αx(s)η(s)η′(s) + βx(s)η
′(s)2 (4)

With a beam focus in the magnet’s centre,H will have a minimum value there and
grow towards the magnet’s edges. Consequently, increasingthe curvatureh(s) =
B(s)/(Bρ) in the dipole centre and lowering it in the outer regions while keeping
the integral

∫

L
h(s)ds = Φ (5)

constant, will compensate for the variation ofH and lead to a lower emittance.
Finding a functionh(s) for minimizing eq.3 under the constraint of req.5 represents
an isoperimetric variational problem, which however can not be solved in general
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Figure 1: Superbends as installed in ALS (left, taken from [4]) and in SLS (right)

analytically. Instead numerical minimizations [1] or analytical minimizations as-
suming special functions forh(s) [2, 3] were done. The ideal functions to be found
correspond to technically non-feasible magnets of infinitelength with infinite cur-
vature in the centre. Here we will try a simpler approach which includes realistic
boundary conditions and gives an analytic solution.

Superbends

Real magnets with increased central field, called “superbends” are installed in sev-
eral medium light sources for production of hard X-rays. ALSruns superconduct-
ing magnets with 5.6 Tesla peak field [4], SLS plans for normalconducting 3.2 Tesla
magnets (March 2005), see fig.1.

A superbend can be simplified as consist-
ing from two components: a central high
field part with given curvatureh, corre-
sponding to the highest possible field, and
an outer low field part with lower curva-
tureh1.

µ=0

max

0 µl l

h

µ=µ

h
1 s

h(s)

With l = L/2 the half length andΦ the full angle, further definingµ as a
measure how far the high field region extends, eq.5 gives

hµl + h1(1 − µ)l =
Φ

2
−→ µmax =

Φ

2hl

The emittance of this bending magnet is given by

ε = K
I50 + I51

I20 + I21

where indices “0” and “1” indicate contributions from the central, resp. the outer
part.
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For the propagation of optical parameters in the magnets a simplified sector
magnet matrix is used by assuming thatΦ ≪ 1, which is an acceptable approxima-
tion for most light sources. Then the3 × 3 horizontal, dispersive matrix of a dipole
of lengthl and curvatureh becomes:







1 s hs2/2
0 1 hs
0 0 1







This matrix determines the propagation of theH-function and allows to calculate
theI5 integrals:

ε(βo, ηo, µ) = K
h3

∫ µl
0 Ho(s) ds + h3

1

∫ l
µl H1(s) ds

h2µl + h2
1(1 − µ)l

βo, ηo are the horizontal optical parameters in the magnet centre (the index “x” has
been dropped), which we want to calculate analogous to eq.2.Due to symmetry we
setαo = η′ = 0.

The analytic solution of the integral above is rather lengthy and best handled
by an algebraic code like MATHEMATICA . The matching conditions for the initial
parameters are obtained by

∂ε (βo, ηo, µ)

∂ηo

!
= 0 → ηo (βo, µ) =⇒ ∂ε (βo, µ)

∂βo

!
= 0 → βo (µ) =⇒ ε (µ)

The results are backsubstituted to get the minimum emittance as a function of the
µ-parameter.

Example

With a beam energy of 2.4 GeV and a maximum field of 7.2 T (assuming a super-
conducting coil), the bend angle was set to 12◦, and the magnet length was limited
to 1.4 m. Emittance, central beta and dispersion as functions ofµ are shown in this
figure:
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Theµ-range extends from 0 toµmax, corresponding to a pure normalconducting
magnet of full length2l, resp. to a pure superconducting magnet of length2µmaxl.
Both these limiting cases result in the same emittance, since according to eq.1, the
minimum emittance of a homogenous magnet depends only on thebend angle. The
µ-value providing the lowest emittance was calculated numerically, since an analyt-
ical solution was not possible and is marked in the plot above. For this example, it
is almost four times lower than the minimum emittance from eq.1!

A cell based on this 12◦ superbend provides an emittance of 0.43 nm rad at 2.4
GeV and is shown in fig.2. Although the chromaticity is extreme (ξ/ν ≈ −10!),
correction with sextupoles integrated in the quadrupoles works well and provides
dynamic apertures which are not hopeless. Nevertheless, the example is academic:
the extreme optics would be very sensitive to all kind of errors. Further, the rms
energy spread amounts to 1.9·10−3, since it scales withI3 =

∫ |h(s)|3 ds and thus
becomes large in the presence of superbends. Therefore, thelarge dispersion in the
straights would determine the source size.

As for the homogenous magnet [5], it turns out, that the emittance does not grow
very much if the center beta and eta deviate from the ideal conditions. The contours
in the plot below indicate equal emittances as functions of deviations from the ideal
condition marked as+. The first contour gives double emittance, the thick contour
5 times the value:

Even increasing the central beta and dispersion both by a factor of 4 gives only
the double emittance, i.e. still below 1 nm. All light sources run at emittances which
are approx.3 . . . 5 larger than the minimum theoretically possible for their magnets.
In case of the superbend lattice the factor 4 gain in the theoretical minimum thus
may help to end up in an emittance range comparable to the theoretical minimum
of existing light sources.

A more realistic example requires dispersion suppression for the straights, since
the energy spread will be large due to superbending fields, and slight relaxation of
the optics for the sake of feasibility and robustness.

The minimum emittance from dispersion suppressor magnets is 3 times the min-
imum emittance from eq.1 [5]. The optimum angle of the dispersion suppressor
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Figure 2: Example of a superbend minimum emittance cell
The cell is based on a 12◦ bending magnet of 1.4 m length with a supercon-
ducting central region of length 0.13 m and a field of 7.2 T. Theouter field is
0.6 T. The optimum optics fulfilling constraints on central beta and dispersion is
shown in the upper left, it provides 0.43 nm emittance at 2.4 GeV. Two combined
quadrupole/sextupole families do the focusing and the chromaticity correction. The
dynamic aperture is shown in the lower left, it amounts to approx. 27 mm mrad in
the horizontal (sufficient for injection) and 1 mm mrad in thevertical (compatible
with mini gap insertions). Second order chromaticity is small and energy accep-
tance large as shown in the lower right.
For normal operation, e.g. in case of quenching of the super conducting coil, the
main field of the dipole can be raised to 1.2 T. This gives the optics shown in the up-
per right, with an emittance of 3.2 nm. Also intermediate settings would be feasible
in order to tune the superbend spectrum.
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Figure 3: Example for a modified TBA lattice containing central superbends (one
sixteenth shown)

(DS) magnet thus has to be chosen such, that it delivers the same emittance as the
superbend (SB), i.e.

ΦDS = ΦSB × 3

√

F/3

whereF = ε/εTME is the emittance reduction factor for the superbend at optimum
µ. For the 12◦ superbend considered before withF = 0.26 we thus obtain 5.28◦ as
dispersion suppressor bending angle. A value of 5.25◦ is an obvious choice, then
16 modified triple bend achromats make a ring.

A scratch lattice of that type is shown in figure 3: The minimumcondition was
relaxed, resulting in 1.35 nm at 2.4 GeV for a ring of 350 m circumference offering
16× 4 m and 16× 10 m [almost] dispersion free straight sections.

However, more work is required to optimize the dynamic aperture of this lattice.
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Appendix: Minimum emittance, central beta function and dispersion asfunction of µ-
parameter (with central curvatureh, magnet half lengthl and full deflection angleΦ):

ε [nm] =
1470 (E [GeV])2

Jx

× 1

12
√

15

×{
(

8h3 l3 µ (−1 + 2µ) − 12h2 l2 µ2 Φ + 6h l µ Φ2 − Φ3
)

× ( 32h5 l5 µ3 (−1 + 2µ) − 32h4 l4 µ4 Φ + 8h3 l3 µ3 Φ2

− 4h2 l2 µ2 Φ3 + 4h l µ Φ4 − Φ5 )

× ( 1280h8 l8 µ6 (−1 + µ (−1 + 5µ))

− 640h7 l7 µ5 (−9 + µ (7 + 13µ (1 + µ))) Φ

+ 640h6 l6 µ4 (−9 + µ (3 + µ (25 + µ (19 + 4µ)))) Φ2

− 320h5 l5 µ3 (−9 + µ (−1 + µ (41 + µ (41 + 12µ)))) Φ3

+ 80h4 l4 µ2 (−9 + µ (−5 + µ (77 + µ (107 + 40µ)))) Φ4

− 8h3 l3 µ (−9 + µ (−9 + µ (245 + µ (413 + 200µ)))) Φ5

+ 112h2 l2 µ2 (4 + µ (7 + 4µ)) Φ6

− 16h l µ (4 + µ (7 + 4µ)) Φ7 + (4 + µ (7 + 4µ)) Φ8 ) }
1

2

/ {2 (−1 + µ)
(

4h2 l2 µ − 4h l µ Φ + Φ2
)

×
(

8h3 l3 µ (−1 + 2µ) − 12h2 l2 µ2 Φ + 6h l µ Φ2 − Φ3
)

}

βo =
l

2
√

15
× { 1280h8 l8 µ6

(

−1 − µ + 5µ2
)

− 640h7 l7 µ5
(

−9 + 7µ + 13µ2 + 13µ3
)

Φ

+ 640h6 l6 µ4
(

−9 + 3µ + 25µ2 + 19µ3 + 4µ4
)

Φ2

− 320h5 l5 µ3
(

−9 − µ + 41µ2 + 41µ3 + 12µ4
)

Φ3

+ 80h4 l4 µ2
(

−9 − 5µ + 77µ2 + 107µ3 + 40µ4
)

Φ4

− 8h3 l3 µ
(

−9 − 9µ + 245µ2 + 413µ3 + 200µ4
)

Φ5

+ 112h2 l2 µ2
(

4 + 7µ + 4µ2
)

Φ6

− 16h l µ
(

4 + 7µ + 4µ2
)

Φ7 +
(

4 + 7µ + 4µ2
)

Φ8 }
1

2

/ { 256h8 l8 (1 − 2µ)2 µ4 − 640h7 l7 µ5 (−1 + 2µ) Φ

+ 128h6 l6 µ4
(

−2 + 4µ + 3µ2
)

Φ2 − 32h5 l5 µ3
(

−2 + 4µ + 9µ2
)

Φ3

+ 32h4 l4 µ2
(

−1 + 2µ + 4µ2
)

Φ4 − 8h3 l3 µ
(

−1 + 2µ + 10µ2
)

Φ5

+ 40h2 l2 µ2 Φ6 − 10h l µ Φ7 + Φ8 }
1

2

ηo = l { 16h4 l4 (−1 + µ) µ3 − 8h3 l3 (−4 + µ) µ3 Φ − 12h2 l2 µ2 (2 + µ) Φ2

+ 2h l µ (4 + 5µ) Φ3 − (1 + 2µ) Φ4 }
/ 12

{

8h3 l3 µ (−1 + 2µ) − 12h2 l2 µ2 Φ + 6h l µ Φ2 − Φ3
}
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