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Abstract

The longitudinal gradient bend is effective to reduce the natural emittance in light sources.
It is, however, not a common element. We analysed its magnetic field and derived a set of
formulae. Based on the derivation, it is discussed how to model the longitudinal gradient bend
in accelerator codes that are used for designing the electron storage ring. Strengths of multipole
components can also be evaluated from the fomulae, and we evaluated the impact of higher
order multipole components in a very low emittance lattice.
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1. Introduction

New or upgraded third generation light sources will realise small electron beam emittance of
pico-meter regime, delivering high brightness photon beams for the experiments. A multi-
bend achromat (MBA) lattice, where multiple dipole bending magnets per arc are installed, is
generally applied, since the beam emittance is inversely proportional to the third power of the
deflection angle per dipole magnet. As the name suggests, the dispersion function is suppressed
at both ends so as not to enlarge the electron beam size due to the energy spread at the location
of insertion devices.

The optical functions over the dipole magnet are adjusted to lower the emittance. The H-
function is taken as a figure of merit [1]:

H = γη2 + 2αηη′ + βη′2, (1)
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where β, α and γ are Twiss parameters, and η and η′ are the dispersion function and its
derivative. The amount of emittance generated by photon emission in the bending magnets is
proportional to H: the smaller H, the smaller the beam emittance.

The optimum optical parameters to minimize the H function, resulting in the theoretical min-
imum emittnace, can be analytically found at least for homogeneous dipole field [2]. The
minimisation of H requires rather small beta and dispersion functions through the dipole mag-
nets, and these values are determined by the length of the dipole magnet. However, they are
not realized in practice because too strong focus and/or too long arc length are required, and
thus the beam emittance is normally well above the theoretical minimum emittance.

The longitudinal gradient bend (LGB), in which the magnetic field varies along the beam orbit,
is effective to reduce H and the resulting beam emittance. Several studies can be found in the
literature, e.g. [3, 4, 5, 6]. Intuitively, the emittance is lowered when more bending is applied
at the location of low dispersion since the emission of synchrotron radiation photon increases
the betatron oscillation amplitude, depending on the magnitude of the energy loss and the
dispersion function. Therefore, the optimum field profile has a peak in the middle of the dipole
magnet [7].

Accelerator codes such as MADX, Bmad and Elegant, are widely used to design storage ring
lattices. An LGB, however, is not yet a common accelerator element, and thus it is not available
in these codes. We have analysed an LGB’s magnetic field and derived a set of formulae to
model it properly. In this paper, we report on the analysis and discuss the LGB’s multipole
components, namely sextupole and octupole. In [6], they are only qualitatively discussed
whereas we evaluated the impact of these higher order terms quantitatively.

2. Magnetic field description

2.1. Coordinate system and magnetic field

The coordinate system shown in Fig. 1 is used throughout this paper. The coordinate of the
magnet is represented by fixed Cartesian coordinates, X-Y -Z. The plane X-Z corresponds to
the dipole symmetry plane where the horizontal magnetic field components are zero, BX =
BZ = 0. On this plane, the vertical field component is given by

BY = BY (X, Y = 0, Z) . (2)

The symbol BY will be used as the vertical field on the symmetry plane, and Y = 0 is omitted
hereafter.

The design closed orbit of the beam is normally on the symmetry plane. We employ another
coordinate system, x-y-s, moving along the closed orbit. The axis s points in the direction of
the beam. The axis y is always parallel to the magnet axis Y while the other axes are rotated
by the angle between Z and s axes, θ. The sign of θ is defined such that the projection of the
axis s to the axis X is pointing to negative X when the angle is positive.

It is convenient to set the origin of the X-Y -Z system to a point where the axis s coincides
with the axis Z, i.e. θ = 0 there. Such a point is uniquely determined once the axis Z is defined
unless the vertical field component BY alters as in undulators, for example. Without loss of
generality, we employ a symmetric LGB, i.e. θ = 0 in the middle of LGB, which can be the
origin, and BY (Z) = BY (−Z).
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2.2. Multipole expansion

The magnetic field is generally expanded into Taylor series, and the multipole components are
directly related to the series terms one by one. We use the following definitions throughout the
paper:

By =
∞∑
n=0

Bnx
n

n!
, (3)

and the corresponding multipole strengths are

Kn =
Bn

Bρ
, (4)

where Bρ is the magnetic rigidity of the beam. The number of poles is 2(n+ 1), i.e. n = 0 for
the dipole field.

The above expansion is defined in the moving coordinate system since the magnetic field acts
on the beam particle following the closed orbit with small transverse deviation.

Let us take an arbitrary location on the closed orbit, which we denote by (X0, Z0). The two
coordinate systems are then connected as

Z − Z0 = x sin θ0, (5)

and
X −X0 = x cos θ0, (6)

where θ0 is the angle between the Z and s axes at (X0, Z0). Hence we get

B0 = BY (X0, Z0) (7)

B1 =
∂BY

∂X

∣∣∣
X0,Z0

cos θ0 +
∂BY

∂Z

∣∣∣
X0,Z0

sin θ0, (8)

B2 =
∂2BY

∂X2

∣∣∣
X0,Z0

cos θ0 +
∂2BY

∂Z2

∣∣∣
X0,Z0

sin θ0, (9)

B3 =
∂3BY

∂X3

∣∣∣
X0,Z0

cos θ0 +
∂3BY

∂Z3

∣∣∣
X0,Z0

sin θ0, (10)

and so on. The first terms in Bn (n > 0) originate at the transverse gradient, and the second
terms originate at the longitudinal gradient. It is shown here that the longitudinal gradient
generates the components higher than dipole.

When the transverse gradient terms are zero, the magnetic field of LGB is “rectangular-bend-
like” field, where the field contour lines are parallel to the axis X. A special case “sector-bend-
like” field, where the contour lines are parallel to the axis x is discussed later although the
rectangular-bend-like magnet may be preferable from the manufacturing point of view.
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2.3. Feed up

The so-called natural focusing in the horizontal plane comes from the geometric nature of sector
bend magnets. It is naively expected that a focusing is due to a transverse gradient. However,
the path length of a particle traveling off closed orbit is longer or shorter than that of the
ideal particle on the closed orbit in a sector bend magnet. The bending angle depends on the
particle path, and thus the natural focusing arises from a pure dipole field. This applies to the
quadrupole component too, i.e., the quadrupole component included in a sector bend generates
sextupolar focusing. The quadrupole component discussed here originates not only from the
transverse gradient but also from the longitudinal one. Feed up refers to this process whereby
an n-th generates an (n+ 1)-th term.

We now discuss an infinitely short segment of a sector bend magnet to formulate the “feed up”
described above. For the short segment, the vertical field, BY , is constant along s but depends
on x.

The path length of a particle along the segment is

l = (ρ0 + x)ϕ0, (11)

where ρ0 is the bending radius and ϕ0 is the bending angle of the segment for the particle on
the closed orbit. For the off-closed-orbit particles, the deflection angle is

ϕ = BY l (12)

=

(
B0 +B1x+

B2

2
x2 +

B3

6
x3 + · · ·

)
(ρ0 + x)ϕ0

= B0ρ0ϕ0

+B0ϕ0x+B1ρ0ϕ0x

+B1ϕ0x
2 +

1

2
B2ρ0ϕ0x

2

+
1

2
B2ϕ0x

3 +
1

6
B3ρ0ϕ0x

3

+ · · ·

The second term corresponds to the natural focusing, and the fourth and sixth terms are the
feed up from the quadrupole component to the sextupole component and from the sextupole
component to the octupole component, respectively.

2.4. Multipole strength

The strength of each component is obtained from Eq. 12 by dividing the length of the segment,
ρoϕ0, and normalizing to the magnetic rigidity. We now remove the subscript of 0 to represent
the strengths as a function of Z and θ:

K1 (Z) =
B0 (Z)2

(Bρ)2
+
B1 (Z, θ)

Bρ
, (13)

K2 (Z) =
2B0 (Z)B1 (Z, θ)

(Bρ)2
+
B2 (Z, θ)

Bρ
, (14)

4



K3 (Z) =
3B0 (Z)B2 (Z, θ)

(Bρ)2
+
B3 (Z, θ)

Bρ
, (15)

The natural-focusing term (the first term of K1) is normally written as 1/ρ2. We use, however,
BY

2/(Bρ)2 for the convenience of the following integration.

The integrated multipole strengths are found by integrating Eqs. 13–15 along the closed orbit
over LGB. The angle θ is

θ (s) =

∫ s

0

BY (s′)

Bρ
ds′. (16)

For small bending angles, it is approximately

θ (Z) ≈
∫ Z

0

BY (Z ′)

Bρ
dZ ′. (17)

This approximation is well justified for the low emittance lattice since the deflection angle per
dipole magnet is only a few degrees. We assumed that the origin of X-Y -Z is set to the point
of θ = 0. Otherwise, a constant (the initial angle) should be added to Eq. 17. Hence the
integration is simply performed with respect to Z. For an LGB with length of L, the integrated
strengths are ∫ L

0

K1dZ =

∫ L

0

[
B0 (Z)2

(Bρ)2
+
B1 (Z)

Bρ

]
dZ, (18)

∫ L

0

K2dZ =

∫ L

0

[
2B0 (Z)B1 (Z)

(Bρ)2
+
B2 (Z)

Bρ

]
dZ, (19)∫ L

0

K3dZ =

∫ L

0

[
3B0 (Z)B2 (Z)

(Bρ)2
+
B3 (Z)

Bρ

]
dZ. (20)

The expansion coefficients, Bn, are now a function of Z alone. It is noted that the terms arising
from the feed up are important only for the horizontal plane.

For the “sector-bend-like field” (as mentioned previously in Sec. 2.2), the expansion coefficients,
Bn, are zero for n > 0. Therefore, no focusing is expected for the vertical plane while the
natural-focusing term still exists in the horizontal plane.

When the magnetic field of LGB quickly falls to zero at the magnet ends, one may simply
evaluate the edge focusing separately and add it to the strength of the main field. The linear
edge focusing is given by

− θe
ρ (Ze)

or − BY (Ze) θe
Bρ

, (21)

where θe is the edge angle and the magnet end is at Z = Ze.

When Eq. 2 is in a form that cannot be analytically integrated, one may rewrite the longitudinal
field profile with a polynomial function or a Fourier series since the integral of these bases are
easily found. Alternatively, a function which is differentiable several times can be used to
represent the profile. Then the multipole strength can be found and integrated numerically.
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2.5. Linear focusing

When the transverse gradient is zero, Eq. 18 could be integrated differently for the horizontal
plane since ∫ L

0

K1dZ ≈
∫ L

0

BY (Z ′)2

(Bρ)2
+

∂BY

∂Z

∣∣∣
Z′
θ (Z ′)

Bρ

 dZ ′, (22)

where an approximation of sin θ ≈ θ is employed. Noting that
∫ (

g′2 + g′′g
)

= g′g for a function
g, ∫ L

0

K1dZ =
BY (L) θ (L)

Bρ
. (23)

From Eq. 23, no horizontal focus is expected when the magnetic field BY reaches to zero at the
magnet end. Also, when the magnetic field BY has a sharp edge and the magnet end is parallel
to the axis X, the edge focus (Eq. 21) cancels out the horizontal focusing of Eq. 23.

3. Analysis of typical field profile

We apply the derived fomulae to typical field profiles, namely a linear profile and a hyperbolic
profile.

3.1. Linear profile

The magnetic field of a linear (falling) profile with no transverse gradient is given by

BY (Z) = Bm (1− Z/L) for 0 ≤ Z ≤ L, (24)

BY = 0 for Z > L, (25)

where Bm is the maximum field at Z = 0, and L is the half length of the magnet.

We set θ = 0 at Z = 0 and evaluate Eqs. 18–20.∫ Z

0

K1dZ
′ =

(
Bm

Bρ

)2(
Z3

3L2
− Z2

L
+ Z

)
+

(
Bm

Bρ

)2(
Z3

6L2
− Z2

2L

)
, (26)

∫ Z

0

K2dZ
′ =

(
Bm

Bρ

)3(
− Z4

4L3
+
Z3

L2
− Z2

L

)
, (27)

∫ Z

0

KndZ
′ = 0 for n > 2, (28)

where an approximation of sin θ ≈ θ is employed. The underlined terms come from the feed
up. It is not surprising that

∫ L

0
K1dZ = 0 for zero initial angle as discussed in Sec. 2.5. When

the initial angle is finite, we get the integrated strength corresponding to Eq. 21.
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3.2. Hyperbolic profile

An LGB with hyperbolic field profile is of interest since it fits well the numerically-found
optimum field profile [7]. When the transverse gradients are zero, the magnetic field is given
by

BY (Z) =
Bm

(1 + h|Z|/L)p
for |Z| ≤ L, (29)

BY = 0 for |Z| > L, (30)

where Bm is the maximum field at Z = 0, h and p are the parameters to form hyperbolic
function, and L is the half length of the magnet.

We again set θ = 0 at Z = 0 and evaluate Eqs. 18–20 for the latter half of the magnet (Z ≥ 0).∫ Z

0

K1dZ
′ =

Bm
2L

h (Bρ)2
F (2p− 1) (31)

+
pBm

2L

(p− 1)h (Bρ)2
[F (2p− 1)− F (p)] ,

∫ Z

0

K2dZ
′ =

2pBm
3L

(p− 1)h (Bρ)3
[F (3p− 1)− F (2p)] (32)

− p (p+ 1)Bm
2

(p− 1) (Bρ)2
[F (2p)− F (p+ 1)] ,

∫ Z

0

K3dZ
′ = −3p (p+ 1)Bm

3

(p− 1) (Bρ)3
[F (3p)− F (2p)] (33)

+
p (p+ 1) (p+ 2)Bm

2L

(p− 1)h (Bρ)2
[F (2p+ 1)− F (p+ 2)] ,

where

F (P ) ≡
1−

(
1 + hZ

L

)−P
P

. (34)

When the magnet is left-right symmetric, the strengths of the full magnet are double of Eqs 31–
33. Otherwise, the integration should be performed for both sides separately. Since the mag-
netic field is non-zero at the magnet end, the corresponding edge focusing needs to be added.

4. Modeling in accelerator code

As mentioned earlier, LGB magnets are not, generally speaking, straightforward to include in
accelerator codes. We may introduce it as a stack of short dipoles: the bending angle of each
slice is set to reproduce the longitudinal field profile. Eq. 13 should also be fulfilled with the
stack of dipoles. A sector bend may then be used for a short dipole to introduce the natural
focusing, which is the first term of Eq. 13. Most accelerator codes are capable of adding a field
gradient to the sector bend element, and thus the second term of Eq. 13 can be introduced at
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the same time. The higher order terms (Eqs. 14 and 15) can be also introduced if the code is
capable to include corresponding higher order gradients. Otherwise, they may be introduced as
a zero length element inserted between the short dipoles, or omitted as far as they are negligible,
as in the numerical example discussed shortly in Sec. 5.

Alternatively, a stack of short sector bends with adjusted edge angles may be used as an
approximation. When all the edges are parallel to the axis X of Fig. 1, there is no net focusing
for the horizontal plane. Therefore, such a stack can approximately represent an LGB, which
should result in no horizontal focusing as discussed in Sec. 2.5, instead of fulfilling Eq. 13 at each
slice as in the aforementioned exact model. This is a convenient approximation during lattice
design since we can skip computing the second term of Eq. 13. However, when the higher order
terms are significant and need to be included, this approximation might be confusing since the
feed-up terms would be evaluated for the non-zero edge angles.

5. Impact of higher order terms

We evaluated the impact of higher order terms, namely sextupole and octupole. A low emittance
lattice under development for an upgrade of the Swiss Light Source [8] is employed. Figure 3
shows the lattice functions and dipole and quadrupole field for one of 12 arcs.

The lattice includes two types of LGB. One is a superconducting magnet with hyperbolic-like
field shape, and the other is a normal conducting magnet with a peak field of about 2 T.
Figures 4 and 5 show the field profiles and corresponding integrated field components up to
octupole. It is seen that the sextupole components are weak with respect to the chromaticity
correction sextupoles with integrated strength on the order of 10 m−2.

By introducing sextupole components into the lattice, the chromaticities are shifted only on
the order of 0.001 in the horizontal plane and 0.01 in the vertical plane. In addition to the fact
that LGB sextupole components are weak, the dispersion function is small along LGB, and
thus the impact on the chromaticity is negligible.

The dynamic aperture of the lattice is computed with and without LGB sextupole and octupole
components (see Fig. 6). The multipole components of the LGBs are much weaker than the
ones included in the lattice except for the octupole components of the superconducting LGB. It
may be overestimated by a hyperbolic fit where the peak field reaches about 9 T. Such a high
peak field may not be achieved in a real magnet and will be <6 T with less sharp field profile.
Nevertheless, the dynamic aperture is not spoiled, and thus we concluded that the impact of
LGB multipoles is marginal.

6. Conclusion

We derived a set of formulae to describe the magnetic field of longitudinal gradient bends in
terms of a multipole expansion. They are applicable to any longitudinal field profile as far as the
bending angle is small enough to justify the small angle approximations used in the derivation.
For the low emittance lattice in which we are interested, the approximation is well justified.
The longitudinal gradient bend would be modeled in the accelerator codes as a stack of short
sector bends as discussed in Sec. 4. Higher order components, namely sextupole and octupole,
are typically weak because they are attenuated through the projection from the longitudinal
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gradient to the transverse gradient. We still evaluated their impact quantitatively with a low
emittance lattice, and it turned out to be marginal.
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include only normal conducting LGBs while the normal conducting LGB in the middle of the arc is replaced
by a superconducting LGB in the other three arcs. Pole tip field corresponds to the one at 13 mm.
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