
A. Streun, Oct. 2017
Empirical method of particle physics: Accelerators

Exercise 1

A. LHC has 1232 dipole magnets of 8.33 T field strength to store protons of a momentum of 7 TeV/c.
What is the (average) length of a magnet?

B. Consider a small ring of 30 m circumference, filled to 60% with dipole magnets of 1.75 T field strength.
Calculate kinetic energy and velocity of positrons, protons and fully stripped carbon ions stored in this

ring.
Hints:
all formula and data are given on slide 11 and 13.
Using “magnetic rigidity” makes it much easier!

Magnetic rigidity

(also see slide 69)
On a circular path of radius ρ in a magnetic field B, the Lorentz force is equal to centrifugal force:

qvB =
mv2

ρ

with q, m, v charge, mass and velocity of a particle. This equation is relativistically valid, with v = βc
and m = moγ.

Introducing the momentum p = mv we get (Bρ) = p/q .

The product of field and radius is called magnetic rigidity and has the unit T·m. It is useful for
calculations like Exercise 1, because we need only momentum and charge.
Charge is a multiple of elementary charge, q = ne, and momentum p = βE/c is given in practical units of
eV/c, not in SI units of kg·m/s:

(Bρ) [Tm] =
p [ kg·m/s]

n e [A·s]
=
e

c
× p [eV/c]

n e
=
p [eV/c]

n c

With c ≈ 3 · 108 m/s and using GeV, not eV, which is more suitable to accelerators, we finally have a
practical formula:

(Bρ) ≈ 10

3

p [GeV/c]

n
.

Exercise 2

A linear accelerator of length L = 1 km and an average accelerating gradient of G = 10 MV/m is used
to accelerate muons, which have mass moc

2 = 105.6 MeV, charge q = e and a mean life time τ = 2.2 µs.
Assume that the muons start at rest.

Which percentage of the muons arrives at the end of the linac (at z = L)?

Hints:
Decay is described by N = Noe

−t/τ and happens in the moving system of the accelerating particle.
Don’t care about the linac structure, cell lengths are assumed to be adjusted to give a constant accelerating

1



gradient.
You need the relativistic formulae from slide 11, the Lorentz force from slide 26 and the infinitesimal Lorentz
transformation c dt = βγdz′ + γc dt′.

Additional questions:
How long does it take the muons to reach the end of the linac? What is the final kinetic energy?
How does it work with pions (moc

2 = 139.5 MeV, q = e, τ = 26 ns).

Exercise 3

Assume a continuous proton beam from a 100 kV ion source. A buncher cavity operating at a frequency of
50 MHz modulates the energy of the protons. The corresponding modulation of velocities leads to different
times of flight to a location further downstream, and thus to a formation of beam bunches from the initially
continuous current.

This process is called velocity bunching or ballistic bunching.
At a distance L=1 m after the buncher the bunching should be optimum in order to inject the protons

into a linac there (i.e. the bunch should have minimum length there).

Question: What’s the required voltage amplitude Uo of the buncher cavity?

Hints:

What’s the proton beam velocity? Is it allowed to do a non-relativistic calculation?

Assume that the buncher is “short”, i.e. any variation of fields inside the buncher may be neglected.

Calculate time of flight for a proton at time ∆t with respect to a reference particle.

Introduce approximations (and check validity!):
a) linearize the time dependance ( sinωt) of the electric field in the buncher.
b) Assume the energy change due to the buncher small compared to the initial energy.
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Exercise 4

A quadrupole doublet (slide 82) provides focusing both horizontally and vertically (if the distance L between
the quads is smaller than the focal length f), however the focus is not at the same location for horizontal
and vertical.

Consider a modified doublet, where the strength ± 1
f2

of the second quad is not the exact opposite of the

first ∓ 1
f1

:

Calculate the focal length f2 as a function of f1 and L to obtain a double focus, i.e. horizontal and
vertical focus at same location.

What is the distance to this focus?

Hint: multiply matrices like shown on slide 82 and find the condition for same focus distances dx, dy.

Example: L = 1 m, f1 = 2 m → f2 = 1.5 m, dx = dy = 3 m.

Exercise 5

Consider a cylindrical, homogenously charged particle beam of radius R, length L and charge Q = Ne,
propagating at a velocity ~v = v ~̂ez.

A. calculate the force

1. on a particle (charge e, mass mo) inside inside this beam

2. on an oncoming particle of same velocity but opposite di-
rection, i.e. ~v = −v ~̂ez.

3. on an oncoming anti-particle (charge −e).

Hints: use Maxwell equations div ~D = % and rot ~H = ~j (with Gauss and Stokes theorems for integral
form) to calculate the fields of the bunch. Neglect the ends of the bunch, i.e. assume it as infinitely long.
Then the electric field is radial and the magnetic field azimuthal. Make use of εoµoc

2 = 1. Show that the
force on the test particle is radial and linear; compare the result for case 1 to slide 80.

B. calculate the focal length of the lens formed by the oncoming bunch in case 3 for the ultrarela-
tivistic limit with particle energy E.

Put in some numbers: 1010 positrons in the bunch, oncoming electrons, both beams at 0.51 GeV (Phi-
factory). Radius at interaction point 50 µm. Length of bunch is not needed for calculation!

Hint: assume that the lens is “short”, i.e. the coordinate r does not change while the particle travels
through the oncoming bunch. Calculate the integrated change of radial momentum for a particle entering
with pr = 0, neglect change of longitudinal momentum. It is useful to introduce the “classical electron

radius” re = e2µo
4πmo

.
Focal length f is given by 1/f = kL with k, L field gradient and length.

(Result: focal length 4.4 cm.)
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