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The simplified Hamiltonian for transverse beam dynamics

1 The curvilinear system

A beam consists of particles travelling closely along a curve in space, therefore it is conve-
nient to introduce a local curvilinear coordinate system traveling along the design orbit of the
accelerator, which is a curve in space:

~r(s) = ~ro(s) + ~̂x(s) · x(s) + ~̂y(s) · y(s) (1)

The vectors {~̂x; ~̂s; ~̂y} form a right hand side system of unit vectors [6], with ~̂s tangential to the

curve, pointing in forward direction, ~̂x radial to the curvature of the curve, pointing away from
the center of curvature, and ~̂y = ~̂s× ~̂x. These unit vectors are defined a priori, i.e. they define
the curve of our choice, whereas x(s) and y(s) will be solutions of the equations of motion in
the curvilinear system. The independent coordinate s is the length of the curve, measured from
some point. We neglect here a possible torsion of the curve.

Derivatives of the vectors with respect to s [5, 2]:

d~ro(s)

ds
= ~̂s because ~ro(s+ ds) = ~ro + ~̂s · ds (2)

Following the curvature by an angle dφ = hds with h = 1/ρ the local curvature (inverse radius
of curvature) applies a rotation around the y-axis:

~a+ d~a =

 cos dφ − sin dφ 0
sin dφ cos dφ 0

0 0 1

 · ~a dφ�1−→ d~a =

 0 −h ds 0
h ds 0 0

0 0 0

 (3)

The unit vectors are given by

~̂x =

 1
0
0

 ~̂s =

 0
1
0

 ~̂y =

 0
0
1


So the derivatives follow as

d~̂x

ds
= h~̂s

d~̂s

ds
= −h~̂x d~̂y

ds
= 0 (4)
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2 The relativistic Hamiltonian

In the most general form, the Hamiltonian with electromagnetic fields is given by

Ho = c

√
(~p− q ~A)2 +m2

oc
2 + qV (5)

with m, q particle mass and charge, V the electrostatic potential and ~A the magnetic vector
potential. The underline indicates that the vector is expressed in a global, cartesian coordinate
system. ~p is the canonical momentum, not the kinetic momentum, which would be given by

m~v = ~p− q ~A. (6)

The Hamilton-Jacobi equations of motion,

ẋk =
∂Ho

∂p
k

ṗ
k

= −∂Ho

∂xk
, (7)

apply only to the canonic coordinates ~x and ~p, but not to the kinetic momentum.

3 Canonical transformations in general

This is well explained in [5]: Canonical transformations perform a coordinate transformation
of the Hamiltonian from an old set of canonical variables {p; q} to a new set of variables
{P ;Q} which are canonical too. So, a canonical transformation is more than just a coordinate
transformation.

The transformation is performed through a generating function F . Its explicit time dependency
is added to the Hamiltonian:

Hnew(P,Q, t) = Hold(p, q, t) +
∂F

∂t
(8)

Four types of generating functions are distinguished, depending on which set of old and new
coordinates they contain:

F1(q,Q, t), F2(q, P, t), F3(p,Q, t), F4(p, P, t)

One uses the one which is most convenient for the problem given.

As an example, let’s use F2. We want the equation of motion in the new coordinates:

Q̇k =
∂Hnew(P,Q, t)

∂Pk
=

∂

∂Pk

(
∂Hold(p, q, t) +

∂F2(q, P, t)

∂t

)
=

∂

∂t

∂F2(q, P, t)

∂Pk

−→ Qk =
∂F2(q, P, t)

∂Pk
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ṗk = −∂Hold(p, q, t)

∂qk
= − ∂

∂qk

(
∂Hnew(P,Q, t)− ∂F2(q, P, t)

∂t

)
=

∂

∂t

∂F2(q, P, t)

∂qk

−→ pk =
∂F2(q, P, t)

∂qk

For other cases, see [5] or calculate analogously.
The signs for the four cases are as +−, ++, −−, −+.

4 The contact transformation

Now we want to apply a canonical transformation to transform the general Hamiltonian from
eq.5 into the curvilinear system. We have the new coordinates q = {x; s; y} and the old momenta
P = {px; py; pz}, so we need a generating function of third type [5]. A possible solution is given
by

F3(~p, ~r, t) = −~p • ~r(s) (9)

with ~r(s) from eq.1 (• = scalar product). The old coordinates (we are not interested in) are
obtained from

x = −∂F3

∂px
= ~rx etc,

i.e. ~r(s) = ~r(s), which is trivial and was just the definition of our curve in space. What we
need are the new momenta in the curvilinear system:

ps = −∂F3

∂s
= ~p •

∂~ro(s)
∂s

+
∂~̂x(s)

∂s
· x+

∂~̂y(s)

∂s
· y

 (10)

From eqs.2 and 4 follows:
ps = ~p • ~̂s · (1 + hx) (11)

For the other components we get directly with eq.1

px = ~p • ~̂x py = ~p • ~̂y (12)

Since F3 does not contain an explicit time dependence, the new Hamiltonian is the old:

H1 = Ho (13)

It is important to note, that ps is not the tangential component of the momentum (which would

be just given by ~p • ~̂s), but the new ~p is the canonical momentum in the curvilinear system.

The next step is handled differently by the different authors: In refs.[6, 2, 3] the vector potential
is considered a canonical vector potential and transformed in the same way as the momentum,
but refs.[1, 5] transform only the canonical momentum, since transforming both would imply a
transformation of the kinetic momentum (see eq.6), which is not canonic. We follow the second
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line, since it will lead to the correct dipole focusing term in the simplified Hamiltonian using
an obvious definition of the vector potential. So, we insert the canonical transformation in the
components of the momentum, i.e. its projection along the new coordinate axis:

~p • ~̂s =
ps

1 + hx
~p • ~̂x = px ~p • ~̂y = py

and insert this into the Hamiltonian:

H1 = c

√(
ps

1 + hx
− qAs

)2

+ (px − qAx)2 + (py − qAy)2 +m2
oc

2 + qV (14)

5 Change of variable t→ s

For beam transformation we would like to use s, the length along the curve describing the
accelerator as the independent variable rather than the time t [3]. The equations of motion are
given by (y not shown):

ẋ =
∂x

∂t
=
∂H1

∂px
, ṗx = −∂H1

∂x
ṡ =

∂H1

∂ps
, ṗs = −∂H1

∂s

Just inverting the last two equations we get

t′ =
∂t

∂s
=

1

ṡ
=

∂ps
∂H1

H ′1 =
∂H1

∂s
= −∂ps

∂t

and for x (and for y the same way)

x′ =
∂x

∂s
=
∂x/∂t

∂s/∂t
=
∂H1/∂px
∂H1/∂ps

H1 must not change if we vary the canonical momenta, i.e.

0 = dH1 =
∂H1

∂px

∣∣∣∣∣
ps

dpx +
∂H1

∂ps

∣∣∣∣∣
px

dps −→ ∂ps
∂px

∣∣∣∣∣
H1

= −∂H1/∂px
∂H1/∂ps

−→ x′ = −∂ps
∂px

p′x =
∂ps
∂x

(15)

Now−ps plays the role of a new Hamiltonian for a new set of coordinates, given by {x, px, y, py, H1, t},
so we define H2 = −ps, with the equations of motion

x′ =
∂H2

∂px
, p′x = −∂H2

∂x
, H ′1 =

∂H2

∂t
, t′ = −∂H2

∂H1

, (16)

The new Hamiltonian is obtained by solving eq.14 for −ps:

H2 = −ps = −(1 + hx) ·

√(H1 − qV
c

)2

−m2
oc

2 − (px − qAx)2 − (py − qAy)2 + qAs

 (17)
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6 Approximations

Several approximations will be introduced, which are justified at least for large high energy
machines [3], and make it much simpler for us to proceed:

• High relativistic: E = pc

• Static: ∂ ~A/∂t = 0

• No electric fields, i.e. no energy gain: V = 0. The H1 from eq.14 is just the total energy
of the particle: H1 = E.

• No fringe fields, i.e. piece-wise constant, hard-edge fields: Bs = 0. In cartesian and
cylindrical coordinates, which are the two cases of a tangential coordinate system to a
torsion-free curve in space we consider, the curl operator gives

Bs =
∂Ax
∂y
− ∂Ay

∂x

This allows Ax = Ay = 0 −→ Bx =
∂As
∂y

By =
∂As
∂x

• Paraxial approximation: particles stay close to the curve, and their transverse momenta
are small compared to the total momentum, i.e. px,y � p.

The first four items simplify the Hamiltonian from eq.17 as

H2 = −(1 + hx)

√√√√E2/c2 −m2
oc

2︸ ︷︷ ︸
p2

−p2x − p2y + qAs

 (18)

The fifth item allows to expand the square root, since px,y/p� 1:

H2 = −(1 + hx)

(
p ·
(

1−
p2x + p2y

2p2

)
+ qAs

)
(19)

Finally we refer to a reference momentum po the machine is designed for, and consider particles
with relative momentum deviations

δ =
p− po
po

(20)

Introducing po and δ in the Hamiltonian gives

H̃2 = −(1 + hx)

(
1 + δ −

p̃2x + p̃2y
2 (1 + δ)

+
q

po
As

)
(21)

Here we introduced dimensionless momenta normalized to the reference momentum p̃x,y =
px,y/po and also normalized the Hamiltonian, such that H̃2 = H2/po is dimensionless.
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7 Modeling the vector potential

The curve in space could be any curve, but we restrict it to a curve which is composed from
pieces which are either straight (cartesian geometry) or curved with constant curvature (cylin-
drical geometry) - like tracks of a toy train. In both geometries the magnetic field, given by
~B = ∇× ~A, simplifies due to Ax = Ay = 0:

In cartesian geometry this gives

Bx = −∂As
∂y

By = +
∂As
∂x

(22)

In cylindrical geometry we have to use the actual radius, given by ρ = ρo + x = 1+hx
h

, with
h the local design curvature of our curve. Using the curl in cylindrical coordinates from any

mathematics book, we have to identify ~̂ρ = ~̂x, ~̂φ = ~̂s, ~̂z = ~̂y. This yields

Bx = −∂As
∂y

By =
h

1 + hx
As +

∂As
∂x

(23)

Since there are no currents, we have ∇× ~B = 0.

In cartesian geometry a possible expression for ~A is given by a multipole expansion:

q

po
As = −<

∞∑
n=1

ian + bn
n

(x+ iy)n (24)

We prove that ∇× ~B = 0:

∇× ~B = ∇×∇× ~A =
∂2As
∂x2

+
∂2As
∂y2

∂2As
∂x2

= −po
q
<
∑

(n− 1)(ian + bn)(x+ iy)n−2 = −∂
2As
∂y2

−→ ok.

Here bn refer to regular multipoles (n = 1 dipole, n = 2 quadrupole etc.) and an to the corre-
sponding skew multipoles, which we will not consider further for now. For the field components
we obtain immediately

By = −po
q

(b1 +b2x+ b3(x
2 − y2) . . .)

Bx = −po
q

( +b2y + b3xy . . .)
(25)

The cylindrical geometry is much more complicated. Calculating ∇ × ~B in cylindrical co-
ordinates is simplified by the assumption of a piece-wise constant field, i.e. Bs = 0 and
∂B(x, y)/∂s = 0:

∇× ~B =

(
∂Bx

∂y
− ∂By

∂x

)
· ~̂s !

= 0
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Inserting eq.23 we obtain

∇× ~B = −~̂s ·

∂2As
∂x2

+
∂2As
∂y2

+
h

1 + hx

∂As
∂x
−
(

h

1 + hx

)2

As

 !
= 0 (26)

A solution of this differential equation for As is given by [1]

q

po
As = −b1

2

1 + hx

h
(27)

Calculating the magnet field from eq.23 gives

By = −po
q
b1 (28)

which is just dipole field as it exists in a sector magnet.

Considering combined function magnets (i.e. bending magnets with gradients as commonly used
in accelerators), a similar multipole representation of the vector potential can be calculated,
but is rather complicated (see p.362 in [4]).

Assuming a separate function lattice, we restrict ourselves to pure dipole fields so far. The
simplified Hamiltonian we will find thus is not valid for combined function magnets. However
in large rings, with strong gradients and low curvatures, the common but inconsistent procedure
to treat the dipole component in cylindrical geometry and the higher multipoles in cartesian
geometry, is good enough.

8 The simplified Hamiltonian

Assuming a separate function machine with pure sector magnets (cylindrical geometry) and
cartesian quadrupoles and higher multipoles, we express the vector potential As by the sum
of eqs.27 and 24 and introduce it into eq.21. Further, we consider only regular multipoles and
show only the first terms of the multipole sum:

H̃2 = −(1 + hx)

(
1 + δ −

p̃2x + p̃2y
2 (1 + δ)

)
+
b1
2

(1 + hx)2

h
+
b2
2

(x2 − y2) + . . . (29)

Here the multiplication of all terms with (1 +hx) was not executed for the multipole sum since
we assumed all these multipoles as cartesian, i.e. h = 0.

Now the dipole field is adjusted to provide the curvature h, i.e. we set h = b1, but note that these
two quantities are not necessarily identical. Subtracting constant terms, which are irrelevant
for the equations of motion from the Hamiltonian, we thus arrive at

H = H̃2 +
1

2
+ δ = (1 + hx)

p̃2x + p̃2y
2 (1 + δ)

− b1xδ +
b21
2
x2 +

b2
2

(x2 − y2) + . . . (30)
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In a last step, the curvature at the kinematic term is dropped, which is justified for large rings.
Also including again the sextupole term, we finally arrive at the simplified Hamiltonian useful
for transverse dynamics in large rings:

H =
p̃2x + p̃2y
2 (1 + δ)

− b1xδ +
b21
2
x2 +

b2
2

(x2 − y2) +
b3
3

(x3 − xy2) + . . . (31)

From this follow the equations of motion

x′ =
∂H
∂p̃x

=
p̃x

1 + δ
=
px
p

which is just the divergence angle (for x′ � 1) (same for y′), and

p̃′x = −∂H
∂x

= b1δ − (b21 + b2)x− b3(x2 − y2)

p̃′y = −∂H
∂y

= b2y + 2b3xy
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