7. Luminosity

Luminosity

Gaussian beams. Hourglass effect. Space charge limit. Luminosity optimization. Tune spread. Beam-beam limit. Beam separation. Crab crossing. Crab sextupoles. Beam disruption

Luminosity with Gaussian beams

Luminosity = particles/time \times particle/area

 $\mathcal{L} = \frac{N^+}{T} \times \frac{N^-}{A^*}$

 $(A^* \text{ common interaction area})$

Luminosity = 4-d overlap of particle distributions ϱ^{\pm} ($\beta = 1$):

$$\mathcal{L} = f_c \int \int \int \int_{-\infty}^{+\infty} \varrho^+(x, y, s + ct) \, \varrho^-(x, y, s - ct) \, 2cdt \, ds \, dx \, dy$$

2c = relative velocity of bunches in laboratory system, $f_c = c/b$ = collison frequency, b distance between successive bunches.

Gaussian distributions ϱ^{\pm} , also include [horizontal] crossing angle $2\theta \ll 1$:

$$\varrho^{\pm}(x,y,s\pm ct) = \frac{N^{\pm}}{(2\pi)^{3/2}\sigma_x(s)\sigma_y(s)\sigma_s} e^{-\frac{(x\pm s\theta)^2}{2\sigma_x(s)^2} - \frac{y^2}{2\sigma_y(s)^2} - \frac{(s\pm ct)^2}{2\sigma_s^2}}.$$

Hourglass effect

Focus at collision point (*) :
$$\sigma_u(s) = \sigma_u^* \sqrt{1 + \left(\frac{s}{\beta_u^*}\right)^2}, \quad u = x; y$$

$$\int \Longrightarrow \qquad \mathcal{L} = \frac{f_c N^+ N^-}{4\pi \, \sigma_x^* \sigma_y^*} \cdot S \quad \longrightarrow \quad A^* = 4\pi \, \sigma_x^* \sigma_y^* \quad \text{for Gaussian beams}$$

Limit on focus: $\beta^* > \sigma_s \longrightarrow S \approx 0.8 \dots 0.95$

Space charge limit

"Lens" formed by charge in oncoming bunch

- very strong: focal length $f \sim \text{cm}$!
- focusing (e.g. e^+e^-) or defocusing (e.g. pp)
- non-linear
 - strong for core particles (x, y small)
 - weak for halo particles (x, y large)
 - even stronger for some $|\Delta s| > 0$ particles

Storage ring collider: betatron tunes Q_{x} , Q_{y}

- → Beam collision: tune shifts $\Delta Q_{x,y}(x, y, \Delta s) \Rightarrow$ tune spread
- → Beam-beam tune shift parameter or space charge parameter: tune shift of center particle $\zeta_{x,y} = \Delta Q_{x,y} (0,0,0)$

Beam-beam limit

Empirical limits for space charge parameter

 $\zeta < 0.05$ in $e^+e^ \zeta < 0.005$ in $p\bar{p}$ collisions

- \rightarrow Saturation of ζ with current
- → blow-up of beams, increase of interaction area
- \rightarrow only linear increase of luminosity: $\mathcal{L} \sim N$, not $\mathcal{L} \sim N^2$

Tune spread

Non-linearity of beam-beam lens \implies Tune spread (*beam's footprint*)

Fig. 11. Beam-beam tune spreads. We assume the two beams have opposite charges. (ν_{x0}, ν_{y0}) is the unperturbed working point. With beam-beam collisions, the working point extends into a working area. The dotted lines are the contours for particles with amplitudes satisfying $x^2/\sigma_x^2 + y^2/\sigma_y^2 = n^2$. We assume $\xi_x = \xi_y = 0.05$. Case (a) is when the aspect ratio is a = 1, i.e. a round beam. Case (b) is when a = 0.1, i.e. a flat beam. Case (c) gives the result in the limit a = 0. (d) shows fitting the working area (shaded region) into a resonance free region in the tune space.

Ref.: W.T.Weng, Space charge effects, tune shifts and resonances, SLAC-PUB-4058, Aug.1986

(Traditional) optimization of luminosity

- collision head-on or very small crossing angle
- space parameters $\zeta_{x,v}$ treated as constant (i.e. set to saturation limit) $\varsigma_u \propto \frac{N\beta_u}{\sigma_*^*(\sigma_*^* + \sigma_*^*)}; \quad u = x, y$
 - $\zeta_{x,v}$ given by bunch charge and geometry
 - \rightarrow insert in luminosity formula:
- Luminosity (flat beams) $\mathcal{L} \sim E^2 \frac{\varepsilon_x}{h\beta^*} \varsigma_x \varsigma_y S$
- → large (!) emittance
- → sharp focus *but*
 - avoid luminosity suppression due to hourglass effect: $\beta^* > \sigma_s$ for $S \approx 1$
 - avoid longitudinal beam-beam effect: energy modulations for large x', y'
 - avoid tune shift increase $\Delta Q > \zeta_{x,v}$ for $|\Delta s| > 0$
- → short distance between successive bunches
 - Iimit: $b = \lambda_{RF}$, bunch distance = RF wavelength
 - avoid parasitic crossings

Beam separation schemes

Magnetic separation for head-on collision of identical particles at same energy

Electrostatic separation for head-on collision of particle/antiparticle at same energy

Asymmetric magnetic separation for head-on collision of particle/antiparticle at different energies to boost the center of mass system.

Crossing angle

- high collision frequency
- reduced luminosity due to incomplete overlap

Andreas Streun, PSI

Crab Crossing

Crossing at angle $\theta << 1$

- high bunch frequency
- 8 reduced overlap/luminosity
- 8 excitation of transverse/longitudinal coupling resonances
- ⇒ restore head-on collision:

In use at KEK B-factory, reached $\mathcal{L} > 2 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Crossing collision

for flat beams ($\sigma_y << \sigma_x << \sigma_z$) large crossing angle (some degree)

1. Reduction of interaction zone

 $2\sigma_s \rightarrow L_{\text{cross}} = 2\sigma_x / \sin \theta$ $\Rightarrow \text{ reduction of } \mathcal{L} \text{ and } \zeta$

2. Low emittance beams

- \Rightarrow increase ζ to space charge limit again
- $\Rightarrow \mathcal{L}$ increases too $\Rightarrow \mathcal{L}$ independent of crossing angle θ !

3. Micro-beta focusing

Criterion:
$$\beta^* > \sigma_s \rightarrow \beta^* > L_{cross} << \sigma_s$$

 \Rightarrow sharper focusing, very small β^*

 \Rightarrow increase of luminosity: $\mathcal{L} \sim 1 / \beta^*$

 \Rightarrow decrease of space charge parameter: $\zeta \sim \beta^*$

D. N. Shatilov & M. Zobov, ICFA BD NL 37 (2005) 99-109

P. Raimondi, D. N. Shatilov & M. Zobov, EPAC-08, Genoa, 2008, WEPP045

4. Crab waist

Lateral shift of focus during collisions ⇒ transverse-longitudinal coupling forces ⇒ beam instability!

colliding "blue beam" as seen from "red beam"

To do: adjust *x*-dependent *s*-position of focus, such that it coincides with the other beam's *x*-axis

 \Rightarrow *x-s* shear of bunch \Rightarrow *How to do?*

"Crab sextupole"

Suppression of vertical blow-up (beam instability)

Beam disruption

Linear collider: no re-use of beam \Rightarrow no limit on ζ -parameter

- \Rightarrow beam-beam lens: focal length < bunch length, $f < \sigma_s$
- ⇒ self-focussing (pinch-effect) ⇒ luminosity enhancement

 $\Rightarrow \text{ beam disruption, parameter } d_u = \frac{\sigma_s}{f} = \frac{2r_e}{\gamma} \frac{N\sigma_s}{\sigma_u(\sigma_x + \sigma_y)} = -4\pi \varsigma_u \frac{\sigma_s}{\beta_u} \quad u = x; y$

Linear collider Iuminosity limitations

- sub-µm alignment of final focus
- beamstrahlung = synchrotron
 radiation in field of oncoming
 bunch
- ⇒ photon recoil ⇒ undefined center of mass energy
- ⇒ direct gamma-background
- ⇒ pair production background