
A. Streun, Oct. 2017

Empirical method of particle physics: Accelerators

Exercise 1

A. Lorentz force = centrifugal force −→ evB = mv2

ρ

relativistically: ecβB = moγc2β2

ρ −→ eB = mocγβ
ρ −→ (Bρ) = p

e = pc
ec = βE[eV]

c

This is just the magnetic rigidity from slide 69.

Momentum is not given in SI units of kg·m
s but in more convenient units of eV

c :

p
[

kg·m
s

]
= e

c · p
[
eV
c

]
. −→ (Bρ) = 1

c · p
[
eV
c

]
.

For p = 7 TeV/c we get (Bρ) = 23334 Tm, and with B = 8.33 T a bending radius of 2801 m.

The total bending angle of a storage ring of course is 2π, so the total magnet length is 2πρ, and the length
per bend 2πρ/1232 = 14.3 m.

B. magnet length L = 18 m (60% of circumference)

Magnetic rigidity:

(Bρ) = B L
2π = 5 T·m

(Bρ) = p
q = mocβγ

ne = (moc2/e)βγ
nc

calculate βγ −→ β, γ −→ T = moc
2(γ − 1)

particle q [e] moc
2 [MeV] βγ γ β T [MeV]

positron 1 0.511 2943 2943 1 1500
proton 1 938.3 1.603 1.889 0.848 834
carbon ion 6 12 × 931.5 0.807 1.285 0.628 3190 or 266 MeV/u
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Exercise 2

Lorentz force in electric field and relativistic momentum

F =
dp

dt
= qG p = mocβγ −→ d(βγ) =

qG

moc2︸ ︷︷ ︸
:=K

cdt

We are interested how the normalized momentum (βγ) changes as time progresses in the moving system,
where the lifetime is defined. The progression of time in the moving system is given by the Lorentz trans-
formation. Since the moving particle stays at rest in its moving system, we have

c dt = βγdz′ + γc dt′
z′=0−→ dt = γ dt′

For the change of momentum in the laboratory system as a function of time in the moving system we thus
get

d(βγ) = Kγdt′

and with the identity γ2 = (βγ)2 + 1
d(βγ)√

(βγ)2 + 1
= Kcdt′

Integration gives the momentum as a function of time

arsinh(βγ) = Kct′ −→ (βγ) = sinh(Kct′)

The distance travelled is given by
dz = βcdt = βγc dt′

We insert the result for (βγ) and integrate over the length of the linac, where T ′ defines the time in the
moving system when the linac end passes the particle (relativistically speaking...)

L =

∫ L

0
dz =

∫ T ′

0
(βγ)c dt′ =

cosh(KcT ′)− 1

K
−→ T ′ =

arcosh(1 +KL)

Kc
,

and the percentage of surviving muons is exp(−T ′/τ).

Using again the identity γ2 = (βγ)2 + 1 we find

γ(t′) =
√
βγ)2 + 1 =

√
sinh2(Kct′) + 1 = cosh(Kct′)

which gives the kinetic energy at the end of the linac:

Ekin = (γ(T ′)− 1)moc
2 = (cosh(KcT ′)− 1)moc

2 = KLmoc
2 = LqG

This is no surprise, since the energy gain corresponds to the integrated electric field (potential difference),
which is just LG.

Finally, the time progressed in the laboratory system is given by

T =

∫ T ′

0
γdt′ =

∫ T ′

0
cosh(Kct′)dt′ =

sinh(KcT ′)

Kc
=
pend

qG
,

a relation which one could have derived immediately from the first equation, because Lorentz force was
acting for time T , but we had to go this way to get explicit results for T and pend.

Inserting numbers, we find that 91% of the muons reach the linac exit after 0.185 µs of their own time and
3.37 µs (> τ !) in the laboratory. Kinetic energy is 10 GeV of course. For the pions it looks bad: only one
out of 7400 would arrive at the linac end.
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Exercise 3

Initial kinetic energy To = 100 keV, proton rest mass moc
2 = 938.3 MeV.

γ = 1 + To/moc
2 = 1.00011 −→ β = 0.0146� 1 −→ sub-relativistic ok.

Assume start time delay ∆to, this is the time when a proton is at the buncher cavity. If we assume that the
cavity is “short”, the kinetic energy gain in the cavity with max. voltage Uo is

∆T = eUo sin(ω∆to) with ω = 2πf and f = 50 MHz

The time of arrival at the end of the driftspace L (where a linac would start) is given by

t = ∆to +
L

v

with the velocity v in sub-relativistic approximation given by

v =

√
2
T

mo
=

√
2

(To + ∆T )

mo
= c ·

√
2
To
moc2︸ ︷︷ ︸

vo

·
√

1 +
eUo
To

sinω∆to

written conveniently this way since To is given in keV-units (not in Joule!).

Optimum bunching is given when all particles arrive at the same time at the end of the drift space no
matter what was the initial time ∆to. Of course this works only for the linear part of the RF wave in the
buncher cavity. One way would be to linearize the sin-function and proceed further, another, more elegant
(but basically equivalent) way is differentiation: the arrival time has to be independant of the initial time,
at least near our reference particle (∆to = 0):

dt

d∆to

∣∣∣∣
∆to=0

!
= 0

The rest is just algebra: insert t and v, differentiate with respect to ∆to and then set ∆to = 0. The result is

Uo =
1

πfL

c

e

√
2T 3

o

moc2
and, with the given numbers, Uo = 2788 V.

The figure below shows the particle in longitudinal phase space relative to the reference particle, i.e. the
coordinates are ∆t = t(∆to) − t(∆to = 0) and ∆T = T (∆to) − T (∆to = 0). The lower plots shows a
histogram of the ∆t distribution, i.e. the beam current. The buncher effect is well visible
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Exercise 4

Abbreviations for convenience: g = 1
f1

, f = 1
f2

Calculate the transfermatrix by multiplication of thin-lens- and drift-matrices:

M =

(
1 D
0 1

)
·
(

1 0
∓f 1

)
·
(

1 L
0 1

)
·
(

1 0
±g 1

)

The upper sign is for horizontal, the lower for vertical (or vice versa).

Multiplication gives

M =

(
1∓Df ±Dg ± Lg − LDfg L+D ∓ LDf

−Lgf ∓ f ± g 1∓ Lf

)
A focus means, that an incoming particle with ∆x′ = 0 and arbitrary x is transformed to cross the axis, i.e.
x = 0 and ∆x′ irrelevant. Expressed as vector transformation (∗ stands for any number):(

0
∗

)
= M ·

(
∗
0

)

This requires that the upper left matrix element m11 = 0.

Solving m11 = 0 for the distance D to the focus gives two solutions (for horizontal and vertical):

D± =
1± Lg

Lfg ± f ∓ g

We want the same focus distance in both dimensions: D+ = D−, i.e.

1 + Lg

Lfg + f − g
!

=
1− Lg

Lfg − f + g

Solve this for f , the strength of the second lens which we want to know:

f =
g

1− (gL)2
or f2 = f1 ·

(
1−

(
L

f1

)2
)

If this solution is introduced in the equation for D± we find, that all ± and ∓ symbols disappear as expected:

D =
1− (Lg)2

Lg2
=

1

Lgf
or D =

f1f2

L

For the example shown we finally may confirm the numbers given.
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Exercise 5

A. Calculate electric and magnetic fields as function of the particle position r inside the beam (r < R).

Use Maxwell equations in integral form, applying the theorems of Gauss and Stokes for trasnforming a
volume integral over div ~D into a surface integral over ~D, resp. the area integral over rot ~H into a line
integral over ~H:

div ~D = ρ −→
∫ ∫

~D · d~σ =

∫ ∫ ∫
ρ dV

rot ~H = ρ −→
∮
~H · d~s =

∫ ∫
~jd~σ

Here ρ is the charge density in the beam, and~j = ρ~v the corresponding current density of a beam propagating
with velocity ~v.

Apply the first equation to a thin slice of length ∆z of the cylindrical beam. Due to symmetry the bottom
and top of this slice will not contribute to the surface integral:∫ ∫

~D · d~σ = Dr 2πr∆z = ρ πr2 ∆z −→ ~D =
ρr

2
~̂er

For the magnetic field, we integrate along a circle of radius r:∮
~H · d~s = Hφ 2πr = ~j πr2 · ~̂ez −→ ~H =

jr

2
~̂eφ

So the electric field is purely radial, the magnetic field purely azimuthal and both are linear in r (for r < R).

Use εo ~E = ~D, µo ~H = ~B, ~j = ρ~v and εoµo c
2 = 1:

−→ ~E =
µoc

2ρ

2
r ~̂er ~B =

µovρ

2
r ~̂eφ

Now we calculate the Lorentz force ~F = q( ~E + ~v × ~B), first for the case of a particle travelling in the beam
(case 1):

~v = v~̂ez q = +e −→ ~F = e
µoc

2ρ

2
r ~̂er + e

µov
2ρ

2
r ~̂ez × ~̂eφ︸ ︷︷ ︸

=−~̂er

(case 1) ~F =
eµoc

2ρ

2︸ ︷︷ ︸
:=F

r

(
1− v2

c2

)
~̂er = F r~̂er(1− β2)

v→c−→ 0

Here we introduced the abbreviation F only for convenience. We see, that the space charge force is always
defocusing, but disappears in the ultrarelativistic limit.

Now consider the two other cases:

(case 2) ~v = −v~̂ez q = +e −→ ~F = F r~̂er(1 + β2)
v→c−→ 2F r~̂er

(case 3) ~v = −v~̂ez q = −e −→ ~F = −F r~̂er(1 + β2)
v→c−→ −2F r~̂er

B. The focal length of a lens is geometrically given by the angle of deflection ∆r′ of a particle that enters
parallel to the z-axis at radius r: 1

f = ∆r′

r .

The deflection angle ∆r′ is given by the angle between change of radial momentum and total momentum,
∆r′ = ∆pr

p , if we assume ∆r′ � 1 → pz ≈ p.
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The change of radial momentum is caused by the radial force:

ṗr = Fr = −2F r for case 3.

The total change of pr after passing through the oncoming bunch of length L is

∆pr =

∫
ṗr dt = −2F

∫
r dt ≈ −2F r∆t

if we assume that r does not change much while passing through the bunch (thin lens approximation). The
time of passage is given by ∆t = L

2c since the relative velocity of the particle and the oncoming bunch is 2c
in the lab frame and in the ultrarelativistic limit.

−→ ∆pr = −2F r L
2c
→ ∆r′ = −FL

pc
r = −FL

E
r,

since pc = E in the ultrarelativistic limit. For the focal length we get

1

f
= −∆r′

r
=
FL
E

=
eµoc

2ρ

2

L

E

The charge density of course is given by the number of particles N in the bunch divided by its volume (R
is the envelope of the homogenously populated beam):

ρ =
Ne

πR2L

We further introduce E = moc
2γ and the constant called classical electron radius re = µoe2

4πmo
and finally get

for the focal length:
1

f
=

e2µoN

2πmo γR2
=

2reN

γR2

Put in the numbers −→ f = 4.4 cm.
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