
inside OPA version 4.047
Andreas Streun, PSI, June 13, 2022

1 Introduction

This note documents the beam dynamics algorithms used in and partially developed for OPA
during the past decades. It may help OPA users to understand the meaning of the results and
the limitations of the models used.

For programmers who like to further develop or renew OPA, or only want to reuse some piece
of the code or an algorithm in other projects, we refer to the relevant units and procedures or
functions by [Unit> Procedure]– occasionally some more comment may be found there. A
brief description of the OPA units is given in Appendix F.

The remark =⇒ to do. . . gives suggestions were things could be completed or improved in
future.

This note is subject to continuous changes as OPA development proceeds further.

2 Beam optics

OPA uses the most simple accelerator model: the lattice is a concatenation of elements, which
are either long (L ≥ 0) and linear and described by a symplectic transfer matrix, or thin (L = 0)
and non-linear and described by a single kick map. Long non-linear elements are modeled as a
series of drifts and kicks (which corresponds to a basic second order symplectic integrator).

OPA is a code for transverse beam dynamics and does not include longitudinal dynamics (i.e.
acceleration). An offset from design momentum u = ∆p/po is considered as constant (adiabatic
approximation). The transfer matrices are of size 5× 5 where the fifth row is just (0, 0, 0, 0, 1).
Thus they propagate the particle vector (x, x′, y, y′, u)T without changing u.

OPA uses the highly relativistic, paraxial and large-ring approximations as detailed in appendix
E.6. It’s main area of application are high energy electron storage rings.

Up to version 3 OPA was restricted to flat lattices (only vertical bends, no skew elements), where
horizontal and vertical motion are decoupled and all transfer matrices are block-diagonal. In
version 4 the Sagan-Rubin representation [8] of the Edward-Teng formalism [7] was implemented
as a major upgrade in order to include transverse coupling: it introduces the “normal-mode
transformation”, where the two transverse planes are decoupled again, but they do not corre-
spond anymore to the physical planes x and y, and therefore are denoted a and b.

1

Linear beam optics at any location in the accelerator in general is fully described by the orbit,
which is a 4-vector, accompanied by the scaler momentum offset u, the Twiss parameters
of the two transverse planes (beta and alpha-functions), and the dispersion 4-vector ~D =
(Dx, D

′
x, Dy,D

′
y)
T . In coupled lattices, in addition the 2 × 2 coupling matrix C is required;

then the Twiss parameters correspond to the “normal modes”.

2.1 The Periodic solution

Beam parameters along the lattice are calculated by propagating initial parameters. In a cir-
cular lattice (storage ring), the periodic solutions have to be calculated beforehand to generate
the initial parameters.

The closed orbit is the fixpoint of the one-turn map including also kicks from non-linear el-
ements. It is iteratively found by application of the standard Newton-Raphson root finding
method using the local transfer matrix (i.e. the one turn matrix including gradient down feeds
from non-linear multipoles) as the Jacobian, i.e. as the gradient for the root finder [OpticPlot>
ClosedOrbit].

When the orbit is found, the local transfer matrix is used to find the periodic dispersion and the
(normal mode) Twiss parameters as described in [8]: The 5 × 5 one-turn matrix is composed

from a the 4×4 transverse focusing matrix R and the 4-vector of dispersion production ~Z, with
2× 2 sub-matrices non-coupling M,N and coupling m,n and horizontal and vertical 2-vectors
of dispersion production ~V , ~w:

R =

(
N m
n N

)
~Z =

(
~V
~w

)
(1)

A normal mode decomposition of R may be found

R = T−1G−1OGT (2)

where O is the matrix containing the eigen-tunes

O =

(
Oa 0
0 Ob

)
and Oa,b =

(
cosµa,b sinµa,b
− sinµa,b cosµa,b

)
(3)

and G is the matrix that contains the local normal-mode beta functions. It is given by

G =

(
Ga 0
0 Gb

)
and Ga,b =

1√
βa,b

0

αa,b√
βa,b

√
βa,b

 (4)

where the indices a and b label the two eigen modes. It is related to the normalized and periodic
sigma matrix

Sa,b = G−1a,bG
−T
a,b =

(
βa,b −αa,b
−αa,b γa,b

)
with γa,b =

1 + α2
a,b

βa,b
. (5)

2

The coupling matrix T and its inverse T−1 are given by [8]

T =

(
gI −C
C+ gI

)
and T−1 =

(
gI C
−C+ gI

)
, (6)

with the 2× 2 identity matrix I and the 2× 2 coupling matrix C. Its symplectic conjugate C+

and the scalar g are given by

C+ = C−1 detC, and g2 = 1− detC. (7)

Explicit calculations are described in [8]. For the coupling terms they derived

g =

√
1

2
± 1

2

|Tr(M −N)|
h

C = ∓sign(Tr(M −N))

g h
(m+ n+) (8)

with h =
√

(Tr(M −N))2 + 4 det(m+ n+). (9)

Existence of a periodic solution corresponds to a real value of h. The normal mode transfor-
mation is not always unique, and a second solution exists for det(m + n+) > 0 as indicated
by the lower sign in the equations. Usually the upper sign is valid in weakly coupled lattices.
Knowing the coupling terms, the normal-mode beta functions are calculated as1:

A = G−1a OaGa =

(
cosµa + αa sinµa βa sinµa
−γa sinµa cosµa − αa sinµa

)
(10)

= g2M − g(Cn+mC+) + CNC+ (11)

B = g2N + g(nC + C+m) + C+MC (12)

It is then straightforward to calculate the fractional tunes from the trace of A, the sign of tune
and beta function from the A12 element (β > 0 always), and the alpha-function from A11−A22,
or in a similar way [9]. In an uncoupled lattice C is a null-matrix and g = 1, simply giving
A = Ax = M and B = Ay = N .

The periodic physical dispersion is obtained from

~D = R~D + ~Z −→ ~D = (I −R)−1 ~Z. (13)

These procedures are implemented in [OpticPlot> Periodic], switching to [>NormalMode]

or [>FlatPeriodic] with and without coupling. When building the lattice, a switch is set
to activate coupled calculation if any elements have non-zero rotation angles, or if explicit
rotations or solenoids are found [OPAGlobal> MakeLattice]. However, later it may happen
that the method is changed from uncoupled to coupled due to skew quadrupolar downfeeds in
non-linear multipoles from vertical orbit excursions.

Alternatively to the periodic solution, a symmetric solution can be calculated as detailed in [9],
where the alpha-functions at both sides of the lattice are zero but the beta-functions may be
unequal [OpticPlot> Symmetric].

=⇒ Symmetric solution is only implemented for uncoupled lattice and will give wrong results
with coupling: to be extended (or to be dropped, since rarely used)

1note, that the first version of [8] had an erratum here

3

2.2 Propagation

As a code for lattice design from scratch it was OPA’s aim from the beginning to calculate
all lattice parameters, even equilibrium parameters like emittance, by forward propagation
irrespective of the existence of a periodic solution. Physically this makes no sense, but it is useful
for design tasks, and therefore emphasis was placed on forward (or backward) calculations.
Closing the ring to enable the periodic solution may be done as a later step in design from
scratch.

In a periodic lattice, initial parameters at one locations are obtained by the procedure as
described above. One can calculate them at any location, by just starting and ending the con-
catenation of the one-turn matrix there. This option is included for cross-checking [OpticPlot>

PropPer], however it is slow and it is not the “OPA spirit”. Fortunately, Sagan & Rubin gave
a recipe [8] how to propagate the periodic solution from one location to another. In a single
pass system, e.g. a transfer line, we anyway have to do forward propagation (of course, in
this case equilibrium parameters really make no sense). We quote here the relevant equations
from [8]. The transfer matrix from some location “1” to another location “2” is known (sub-
matrices M,N,m, n), because it was used for concatenating the one-turn matrix. If the optics
parameters at “1” are known, they are calculated at “2” as follows:

g22 = det(n12C1 + g1N12) (14)

If g22 < 0 we encounter the so-called “mode flip” (see below), for the moment we assume g22 > 0.
Then a block-diagonal transfer matrix is constructed with 2× 2 sub-matrices given by

E12 =
g1M12 −m12C

+
1

g2
F12 =

g1N12 + n12C1

g2
(15)

The one-turn matrices from Eq.10 propagate as

A2 = E12A1E
−1
12 B2 = F12B1F

−1
12 (16)

Transformation to another location does not change the tune, because at any location we have
Ai = G−1ai OaGai The transformation of the sigma matrix Sa (eq.5) follows from

A2 = G−1a2OaGa2 = E12G
−1
a1OaGa1E

−1
12 (17)

Sa2 = G−1a2G
−T
a2 = E12G

−1
a1 (E12G

−1
a1)T = E12G

−1
a1G

−T
a1 E

T
12 = E12Sa1E

T
12 (18)

and the same for Sb with matrices F and B. The coupling matrix propagates as

C2 = (g1m12 +M12C1)F
−1
12 . (19)

The phase advance from 1 to 2 is calculated by extracting the rotation part from matrix E12:

E12 = G−1a2Oa12Ga1 −→ Oa12 = Ga2E12G
−1
a1 −→ cos ∆µa12 = Tr(Oa12)/2. (20)

Phase advances accumulate, i.e. µa2 = µa1 + ∆µa12.

4

If the transfer matrix from “1” to “2” is not coupling, then we simply get

g2 = g1 , E12 = M12 , F12 = N12 , C2 = M12C1N
−1
12 . (21)

A “mode flip” occurs for g22 < 0. This may happen in strongly coupled lattices: depending
on the sign of det(m + n+) one or two solutions exist at different locations, and the initially
chosen solution may terminate at some location, and we have to continue with the other one.
At least one has to exist everywhere in a periodic lattice, otherwise there would be no periodic
solution. The transfer matrix from “1” to “2” becomes off-block diagonal, which means that
the modes a and b change places. We also quote the corresponding equations for propagation
with a mode flip:

g22 = det(M12C1 + g1m12) (22)

Nothing can go wrong now, because this is our “fall-back” which has to exist if Eq.14 didn’t!
We then get the off-diagonal block matrices

E12 =
g1n12 −N12C

+
1

g2
F12 =

g1m12 +M12C1

g2
(23)

The one-turn matrices propagate “cross wise” as

A2 = F12B1F
−1
12 B2 = E12A1E

−1
12 . (24)

The tunes are interchanged now, so the transformation of the sigma matrices follows from

A2 = G−1a2ObGa2 = F12G
−1
b1 ObGb1F

−1
12 (25)

Sa2 = G−1a2G
−T
a2 = F12Sb1F

T
12 Sb2 = G−1b2 G

−T
b2 = E12Sa1E

T
12. (26)

Thee coupling matrix transforms as

C2 = (g1M12 −m12C
+
1)E−112 . (27)

The 4× 4 transfer matrix for propagation of the normal modes becomes block off-diagonal(
0 F12

E12 0

)
=

(
G−1a2 0

0 G−1b2

)
·
(

0 Oa12

Ob12 0

)
·
(
Ga1 0
0 Gb1

)
(28)

Extracting the rotation matrices gives

Oa12 = Ga2F12G
−1
b1 Ob12 = Gb2E12G

−1
a1 (29)

After this operation the propagation proceeds in flipped mode, i.e. the phase advances are
accumulated cross-wise as

µa2 = µa1 + ∆µb12 µb2 = µb1 + ∆µa12 (30)

5

until the next mode flip happens– the “flip status” changes at each mode flip. Actually in case
of mode flips one cannot tell which mode is horizontal or vertical, there are just two orthogonal
modes, and depending if the calculation starts flipped or not, the total accumulate tunes are
interchanged.

The tune increments from Eq. 30 may show weird numbers with little physical meaning, but
they will sum up to give the eigen-tunes from Eq. 3 after one turn. As emphasized in [8] there
should be an even number of mode-flips in the lattice, otherwise the accumulated tunes make
no sense. Therefore, when propagating in flip mode, an intentional mode flip back should be
done at the next occasion (i.e. at a coupling element) or at the end of the lattice.

=⇒ The integer part of the tune becomes wrong in some cases with mode flip. It’s not yet
understood why this happens and how it could be improved.

These procedures are implemented in [OPAElements> Propagate], branching to [>MCC prop]

with and [>MBD prop] without coupling, and using [>PhaseAdvance] for the phase advances.

2.3 Projections

The projections of the beta functions to the physical coordinates x, y are derived from the
expressions in [8] [OPAElements> GetBeta12]

βxa = g2βa βxb = βb

[C2
11 − C12

αb
βb

]2
+

[
C12

βb

]2 (31)

βyb = g2βb βya = βa

[C2
22 − C12

αa
βa

]2
+

[
C12

βa

]2 (32)

(33)

Here βxa, βyb are the principal modes, which become βx, βy without coupling, and βxb and βya
are the cross-talks from the other transverse plane which disappear without coupling.

A normalized normal-mode sigma-matrix σ̄ has just the normal mode emittances as diagonal
elements. The real sigma matrix σ in physical quantities is obtained by transformation to local
normal mode betas and from normal mode coordinates to real space coordinates [OpticPlot>
N2SfromOp]:

σ =

〈x2〉 〈xx′〉 〈xy〉 〈xy′〉
〈xx′〉 〈x′2〉 〈x′y〉 〈x′y′〉
〈xy〉 〈x′y〉 〈y2〉 〈yy′〉
〈xy′〉 〈x′y′〉 〈yy′〉 〈y′2〉

 = T−1G−1

εa 0 0 0
0 εa 0 0
0 0 εb 0
0 0 0 εb

G−TT−T (34)

The projected emittances in the physical dimensions are given by the determinants of the 2×2
block diagonal matrices:

εx =
√
〈x2〉〈x′〉2 − 〈xy〉2 (35)

6

In order to include contributions from energy spread σu =
√
〈u2〉 and dispersion the 4 × 4

matrices can be extended to 5 × 5 including dispersions in the fifth column of T−1G−1 and
σ2
u as 5,5-element of the normalized sigma matrix, or the contributions are added explicitly.

For visualization of the different contributions to the envelope the equivalent formulation with
projected beta functions is preferred [OpticPlot> PlotEnv]:

σx =
√
εaβxa + εbβxb + (σuDx)2 σy =

√
εbβyb + εaβya + (σuDy)2 (36)

Finally, the tilt angle θ of the beam in the (x, y)−plane is given by [OpticPlot> FillBetaTab]

tan 2θ =
2〈xy〉

〈x2〉 − 〈y2〉
(37)

3 Elements

The lattice transfer matrix is obtained by concatenation (multiplication) of the single elements
matrices. On-axis only linear magnets contribute, these are the general bending magnet with
drift, dipole, quadrupole as special cases, the edge focusing kicks, the rotation and within some
approximation the solenoid.

Off-axis the orbit receives kicks from (thin) non-linear multipoles, and the local transfer matrix
at the orbit has to include focusing terms from the local regular and skew gradients encountered
off-axis in non-linear multipoles.

Off-axis also quadrupoles and higher multipoles become “bending magnets”, because they bend
the orbit, and thus will produce dispersion. Also dispersion production in a real bending magnet
will be modified off-axis.

Orbit correctors are small dipoles to create or correct orbit excursions. Uundulators are a series
of rectangular dipoles alternating with drifts. Kickerr magnets are time dependent dipoles or
multipoles.

The 5× 5 transfer matrix of a linear magnet in general is given by

R =

 M m ~V
n N w
0 0 1

 (38)

with horizontal and vertical 2 × 2 transfer matrices M and N and the dispersion production
2-vectors ~V and ~w 2-vectors. For a regular magnet which does not introduce coupling, the
transfer matrix is block-diagonal, i.e. m = n = 0 and ~w = 0.

7

3.1 On-axis

The general bending magnet, deflecting in the horizontal plane, has a block-diagonal matrix
and does not produce vertical dispersion. Other orientations of a bending magnet in the lattice
are realized by sandwiching it between coordinate rotations.

A general bending magnet has a curvature h = 1/ρ = By/(Bρ) and a gradient k = ∂By/∂x/(Bρ),
with (Bρ) = p/e the magnetic rigidity of the particle. h > 0 bends the beam towards the ring
center, i.e. in −x direction and thus creates positive dispersion. k > 0 focuses horizontally, i.e.
kicks a particle at x > 0 to −x direction.

Introducing the abbreviations

K = h2 + k, p =
√
|K| , q =

√
|k| (39)

with the longitudinal coordinate s, the sub matrices are given by [21]

MSM =

(
cos ps sin ps

p

−p sin ps cos ps

)
(

1 s
0 1

)
(

cosh ps sinh ps
p

p sinh ps cosh ps

) ~VSM =

(
h
p2

(1− cos ps)
h
p

sin ps

)
for k > −h2(

hs2

2

hs

)
for k = −h2(

h
p2

(cosh ps− 1)
h
p

sinh ps

)
for k < −h2

(40)

and N is given by

NSM =

(
cos qs sin qs

q

−q sin qs cos qs

)
for k < 0(

1 s
0 1

)
for k = 0(

cosh qs sinh qs
q

q sinh qs cosh qs

)
for k > 0

~wSM = 0 (41)

Here k = 0 describes a pure dipole, h = 0 a quadrupole, and for h = 0 and k = 0 we recover
a drift space. Defining Cp = cos ps or cosh ps and S̄p = (sin ps)/p or (sinh ps)/p depending on
the sign of K, and similar for q, we can write in a compact way:

M =

(
Cp S̄p
−KS̄p Cp

)
~VSM =

(
(1− Cp)h/K

hS̄p

)
N =

(
Cq S̄q
kS̄q Cq

)
(42)

[OPAElements> Drift Matrix, Quad Matrix, Sector Matrix, Bend Matrix]

For a bending magnet where the entry and exit edges are not perpendicular to the beam
direction (e.g. rectangular bend), we need to take the pole face rotations into account by
means of thin kick matrices before and after the sector [OPAElements> EdgeKick Matrix]: :

M =

(
1 0

h tan θ 0

)
N =

(
1 0

−h tan(θ − ψ) 0

)
(43)

8

Here θ is the angle between the entrance or exit edge of the magnet and the plane perpendicular
to the beam. θ > 0 turns the sector bend towards a rectangular bends, where θ1 = θ2 = Φ/2
with Φ = hL the bending angle. The parameter ψ takes into account a finite extension of the
fringe field, characterized by the parameter K1 and the gap g [20]:

ψ = K1hg
1 + sin2 θ

cos θ
K1 =

∫ By(s) (B0 −By(s))

gB2
0

ds (44)

The rotation is a change of coordinate system. For example, a vertical bending magnets would
be introduced by a 90◦-rotation. It’s matrix is given by

M = N =

(
cosφ 0

0 cosφ

)
m = −n =

(
sinφ 0

0 sinφ

)
(45)

with φ the angle of rotation, [OPAElements> Rotation Matrix].

The solenoid has a longitudinal field and thus is only described correctly by the Hamiltonian of
Eq.138. Using the approximation Bs = 0 from Sec.E.6 as implemented in OPA, the treatment
is not completely correct. In our simplified framework the solenoid can be modeled as a product
of a rotation matrix with a quadrupole-like matrix focusing in both planes. With the strength
k = Bs/(2Bρ) and φ = kL the sub-matrices are [OPAElements> Sol Matrix]

M = N =

(
cos2 φ cosφ sinφ

k

−k cosφ sinφ cos2 φ

)
m = −n =

(
− sinφ cosφ − sin2 φ

k

k sin2 φ − sinφ cosφ

)
(46)

=⇒ The implementation of the solenoid is incomplete with regard to focusing and dispersion
down-feeds, chromaticity and radiation integrals.

3.2 Off-axis

The orbit ~x = (X, Y ′, Y, Y ′, U)T (here U = ∆p/p is the momentum deviation of the orbit) is
propagated by application of the transfer matrix in linear elements and by a series of drifts and
thin kicks in non-linear elements.

The linear matrices were collected in the previous section. They are independent of the orbit,
because the elements are linear. As derived in appendix E (see Eq.157) the parameters h, k
and K all scale with momentum as

h =
h0

1 + U
, k =

k0
1 + U

, K =
h20 + k0
1 + U

−→ dh

dU

∣∣∣∣∣
U=0

= −h0 etc. (47)

because h entered in a two-fold way, as curvature of the local coordinate system in a bending
magnet of cylindrical symmetry and as geometric effect leading to a pseudo-focusing effect.

9

Dispersion is the local derivative of the orbit with respect to U . Consider the horizontal
dispersion:

Dx = Ẋ =
dX

dU

∣∣∣∣∣
0

= R11
dX0

dU

∣∣∣∣∣
0

+
dR11

dU

∣∣∣∣∣
0

Xo + R12
dX ′0
dU

∣∣∣∣∣
0

+
dR12

dU

∣∣∣∣∣
0

X ′0 +R15

A last term dR15/dU ·U disappeared, because we take the limit U → 0. Derivatives of X0 and
X ′0 are just the dispersion and its derivative Dxo and D′xo at the magnet entry, so first, third
and fifth term recover the on-axis transformation. For off-axis we need the derivatives of the
matrix elements R11 and R12 to get the additional dispersion production on the orbit entering
the magnet at position Xo and angle X ′o.

We find for both trigonometric and hyperbolic quantities contained in the matrix elements

dp

dU

∣∣∣∣∣
U=0

= ∓K
2p

= −p
2
−→ dCp

dU

∣∣∣∣∣
U=0

= S̄p
Ks

2
,

dS̄p
dU

∣∣∣∣∣
U=0

= (S̄p − sCp)
1

2
,

and finally for the additional dispersion production ∆ ~D(s) = dX(s)/dU |U=0(
∆Dx

∆D′x

)
=

1

2

(
S̄pKs (S̄p − sCp)

(S̄p + sCp)K S̄pKs

)
·
(
X0

X ′0

)
(48)(

∆Dy

∆D′y

)
=

1

2

(
−S̄qks (S̄q − sCq)

−(S̄q + sCq)k −S̄qks

)
·
(
Y0
Y ′0

)
(49)

These contributions have to be added to the dispersion production vectors ~V and ~w.

In the special case that K = 0 or k = 0 we get null-matrices for the dispersion productions.

The kicks from a thin 2n-pole of integrated strengths bnl are given by

∆X ′ − i∆Y ′ = −bnl(X + iY)n−1, (50)

The multipole does not change the coordinates X, Y , because it is thin, and the kick is not a
function of the angles X ′, Y ′.

Local gradients and dispersion productions are found from expansion:

∆X ′ = ∆X ′o +
d∆X ′

dX

∣∣∣∣∣
0

+
d∆X ′

dY

∣∣∣∣∣
0

+
d∆X ′

dU

∣∣∣∣∣
0

,

and the same for ∆Y ′. The second and third terms correspond to local integrated regular
and skew quadrupole gradients krl and ksl, defined by krl = −d∆X ′/dX = +d∆Y ′/dY and
ksl = +d∆X ′/dY = +d∆Y ′/dY :

krl + iksl = (n− 1)bnl(X + iY)n−2 n ≥ 2 (51)

10

The last term is the dispersion production, following from dbn/dU |0 = −bn:

∆D′x = −X ′o ∆D′y = −Y ′o (52)

Explicitely for the first multipoles:

n=1 n=2 n=3 n=4
∆X ′o = −∆D′x −b1l −b2lX −b3l(X2 − Y 2) −3b4l(X

3 − 3XY 2)
∆Y ′o = −∆D′y 0 b2lY 2b3lXY 3b4l(Y

3 − 3X2Y)
krl 0 b2l 2b3lX 3b4l(X

2 − Y 2)
ksl 0 0 2b3lY 6b4XY

(53)

The off-axis multipole transfer matrices is [OPAElements> ThinSextupole, Multipole]:

R =

1 0 0 0 0
−krl 1 ksl 0 −X ′o

0 0 1 0 0
ksl 0 krl 1 −∆Y ′0
0 0 0 0 1

 (54)

3.3 Other elements

Combined: The element type “Combined” is just a bending magnet. It has deflection an-
gle and focusing strength, but in addition it may have a sextupole moment. Internally it is
subdivided in a number of slices with thin sextupoles between [OPAElements> Combined].

=⇒ For historical reasons the elements “Bending” and “Combined” exist in parallel, basically
Combined includes Bending, except a second fringe field parameter K2 which actually was never
ever used. So these elements may be merged into one.

Corrector and monitor: a corrector is just a short multipole of integrated field b1l (“H-
corrector”) or a1l (“V-corrector”). Unlike a multipole the V-corrector is not obtained by rota-
tion of a H-corrector, but it is an element of its own. Correctors kick the orbit but the impact
on beam optics is neglected, except that they also create local dispersion.

If correctors are given the names CH or CV all appearances in the lattice become independent
elements (automatically renamed CH001 etc.) to be addressed individually in orbit correction
(see below). The same applies to BPMs, element type “Monitor”, if the name is MON.

Undulator: the alternating field of an N -pole wiggler (or undulator) can be well approximated
by a series of 2N rectangular dipole magnets, where the end poles on both sides are attenuated
in order to center the wiggling orbit on axis. The field of half pole k is Bk = pkB̂ with B̂ the
maximum field occurring in the central poles only, and

pk =
{

1

4
,−3

4
, 1,−1 . . . 1,−1,

3

4
,−1

4

}
k = 1, 2 . . . 2N

11

for optimum centering of the electron beam.

A general filling factor, i.e. the ratio of rectangular bend length to half pole length (= λ/2) is
defined by

fn =
1

λ

∫ λ

o

∣∣∣∣∣By(s)

B̂

∣∣∣∣∣
n

ds (55)

where f1 affects the orbit, and f2, f3 the radiation integrals, see Sec.4.1. An ideal sinusoidal
wiggler has

f1 =
2

π
= 0.637 f2 =

1

2
= 0.5000 f3 =

4

3π
= 0.424. (56)

Kicker: a kicker is a time-dependent 2n-pole, in the simplest case (n = 1) a dipole. It has a
time constant, where we assume a half-sine shaped pulse of duration τ , and a delay δ, so its
time dependence is

f(t) = cos π
t− δ
τ

for − τ

2
< t <

τ

2
else 0

OPA has two implementations, a regular multipole and a non-linear kicker of a type as described
e.g. in [24]. In the latter case a value x̂ is given, where the field reaches maximum deflection
∆x′. Then the integrated field (i.e. the actual kick) and the local gradient vary as

b1l(x, t) = ∆x′ f(t) sinn−1Ax b2l(x, t) = ∆x′Af(t) sinn−2Ax cosAx (57)

with A = π/2/x̂, for |x| < 2x̂ and n ≥ 2. So near the origin this kicker looks like a regular
2n-pole.

A regular multipole-kicker is identified by x̂ = 0 and instead the multipole strength is given.
Then Eq. 53 applies and is just multiplied with the time dependence f(t) [OPAElements>

Kicker], [tracklib> TMatKick].

4 Radiation integrals

Radiation integrals were derived in detail in [1]. The results are summarized in Table 1. Here,

the normal-mode dispersion ~D and the normalized normal-mode dispersion ~̃D are used:

~D = T ~D ~̃D = GT ~D (58)

Without coupling (T = 1, a = x, b = y) and on-axis (X(s) = Y (s) = 0) the well known
elementary formulae are recovered:

I4[x] =
∫
Dx(s)(2k(s)h(s) + h(s)3) ds−

∑
i=1,2

Dxih
2
i tan θi I4y = 0

I5[x] =
∫
Hx(s)|h(s)|3 ds I5y = 0

12

Table 1: Radiation integrals for a general bending magnet with curvature h0 and focusing
strength k including coupling and orbit distortions.

I1 =
∫

(hXDx + hYDy) ds I2 =
∫
|h(s)|2 ds I3 =

∫
|h(s)|3 ds

I4a =
∫

[Cx(s)gDa(s) + Cy(s) (Dy(s)− gDb(s))] ds−
∑
i=1,2

tan θi|hi|2gDai

I4b =
∫

[Cy(s)gDb(s) + Cx(s) (Dx(s)− gDa(s))] ds−
∑
i=1,2

tan θiC̄xi (Dxi − gDai)

I5a =
∫
~̃D
T

a (s) · ~̃Da(s) |h(s)|3 ds I5b =
∫
~̃D
T

b (s) · ~̃Db(s) |h(s)|3 ds

with hX(s) = h0 + kX(s) hY (s) = −kY (s) |h(s)| =
√

(hX(s))2 + (hY (s))2

Cx(s) = hX(s) (|h(s)|2 + 2k(s)) Cy(s) = hY (s) (|h(s)|2 − 2k(s))

with Hx = (Gx
~Dx) · (Gx

~Dx)
T = γxD

2
x + 2αxDxD

′ + βxD
′2
x

On-axis only the bending magnets contribute to the integrals. Off-axis basically all magnets
contribute, but, as discussed in [1], the non-linear multipoles are negligible. Analytic solutions
for the integrals in a general bending magnet with constant parameters h,k were implemented in
earlier versions of OPA, however these equations (generated by an algebraic code), were rather
lengthy and not intuitive, further it was not possible to include off-axis contributions. Therefore
a semi-numeric implementation was chosen by using a Simpson-integration over the bending
magnets. The number of points is estimated from the phase advance over the bending magnet
in order to catch variations of the optical functions [OPAElements> Bending, Quadrupole].

The radiation integrals are sums over the contributions from all magnets. If mode-flips occur
in the lattice, each flip sets or releases a flag to add the integral contributions crosswise.

Finally the radiation equilibrium parameters are calculated from the integrals [OpticPlot>

LinOp]

Momentum compaction factor α = I1/C (59)

Energy loss per turn [eV] Uo = Cγγ
4I2 (60)

Damping partition numbers Ja,b = 1− I4a,b
I2

Ju = 4− Ja − Jb (61)

Relative energy spread σ2
u = Cqγ

2 I3
I2Ju

(62)

Normal mode emittances [m] εa,b = Cqγ
2 I5a,b
I2Ja,b

(63)

13

with the constants (µo is vacuum permeability) [OPAGlobal> OpaInit]

Cγ =
ec2µo

6π
= 9.60 · 10−10Vm Cq =

55h̄

32
√

3moc
= 3.83 · 10−13m (64)

4.1 Simplified undulator integrals

Since optical parameters usually do not change much over one period of an undulator, and since
an undulator may have many poles, we introduce some approximations in order to simplify and
speed up calculations.

We define the peak curvature ĥ = B̂/(Bρ) and the peak gradient k̂ = B̂′/(Bρ). For the first
integral, the path length, we need only the dispersion in the direction of deflection, i.e. Dx:

∆I1k =
∫ λ/2

0
Dxh(s) ds ≈ f1

λ

2
〈Dx〉 pk ĥ (65)

For the average of the dispersion and other optical functions we simple use the mean of values
before and after the pole, 〈D〉 ≈ (D0+D1)/2. This neglects the wiggling of the dispersion inside
the undulator, which is justified for undulators with small periods as used in low emittance
rings. Either the undulator is located in a dispersion free region, than its inner dispersion is
too small to have a signficant impact on the first, fourth and fifth integral, or it is located in a
dispersive region, but then its inner dispersion is small compared to the outer dispersion.

The second and third integral do not depend on optical functions and thus are simply given by

∆I2k = f2
λ

2
(pk ĥ)2 ∆I3k = f3

λ

2
|pk ĥ|3 (66)

where we used the factor from Eq.55. The fourth integrals for a short, rectangular magnet of
length L and gradient k were derived in [1]:

I4a ≈ 2gDahkL I4b = I40 − I4a I40 = 2DxhkL (67)

The h3 term usually present in the fourth integral is canceled by the rectangular edge effects in
a short magnet. Since both h and k follow the sinusoidal variation, we have to use f2 and get

∆I4ak = f2
λ

2
g 〈Da〉 p2k ĥ k̂ ∆I4bk = f2

λ

2
〈Dx〉 p2k ĥ k̂ − I4ak (68)

The fifth integrals contain the generalized dispersion invariants Ha,b = ~̃Da,b · ~̃D
T

a,b,

∆I5ak = f3
λ

2
〈Ha〉 |pk ĥ|3 ∆I5bk = f3

λ

2
〈Hb〉 |pk ĥ|3 (69)

14

5 Optics calculations

Once a periodic solution is found, the 17 optics parameters (orbit, normal mode beta functions,
dispersions, coupling matrix, and momentum offset) are defined at the begin/end of the lattice
and are then propagated along the lattice to each element. Alternatively, the parameters can
be given explicitly at the begin (or at any other location of the lattice using an “optics-marker”
element) to be propagated forward (and/or backwards). Phase advances, chromaticities and
radiation integrals are accumulated in propagation [OpticPlot> LinOp].

As an interactive design tool OPA emphasizes visualization by resolving the optics inside the
elements. Zoom functions allow the optical functions and the length scale to be magnified,
for example to visualize the wiggling dispersion inside an undulator. Elements are subdi-
vided in slices of a maximum length corresponding to one pixel on the screen [OpticView>

TOptic.Zoom], and matrices are calculated for the slices and also for the skipped part of the
element outside the plot window [OPAElements> SliceSet etc.]. If an element is rotated, e.g.
a skew quadrupole, the rotations are applied to each slice to show the optical functions in the
original coordinate systems, otherwise each rotation would cause a discontinuity in the plot (of
course, explicit rotations can be entered as well to do this). Furthermore, a 45◦-rotation cor-
responds to a massive coupling and may cause a mode-flip, whereas a (weak) skew quadrupole
represented by a quadrupole sandwiched between ±45◦rotations may cause only moderate cou-
pling.

Matching of optical functions from one point to another is an important feature when building
a lattice: functions at a final location, and if needed, also at an intermediate location, may be
selected, target values are entered, and a couple of “knobs” is selected, which can be focusing
strengths of elements, lengths of drift spaces or variables in order to build “super-knobs”. Of
course, the number of knobs has to be as large or larger than the number of target functions.
The minimizer then establishes a sensitivity matrix and uses the most efficient knobs to set up
a linear system, which is solved by LU-decomposition. The procedure thus corresponds to a
Newton-Raphson minimization using the sensitivity matrix as Jacobian (like the closed orbit
finder) and converges quadratically. However, due to the non-linearity of the problem it may
not converge if it starts too far away from the target values, then a manual pre-matching should
be done (which is also useful to understand the problem. . .) or the step size has to be reduced
to make convergence more robust on the expense of speed [OpticMatch> TMatch.Step].

=⇒ The matching module is one of the eldest part of OPA from MS-DOS-times with 640K
RAM limit. Coupling is not included, i.e. it works only for flat lattices. A more powerful and
flexible optimizer should be implemented which also includes range limits for the knobs.

Momentum dependence of the solutions is studied by a series of calculations for different momen-
tum offsets and several parameters can be plotted and fitted by polynomials [MomentumLib>

Calculate]. If path length was selected the polynomial coefficients corresponding to the

15

orders of the momentum compaction factor are saved internally [MomentumLib> MakePlot>

fit and plot] and can be used to calculate and draw the bucket [Bucket> TBucketView.CalcBucket].
The calculations to get fixpoints and separatrix are explained in appendix D. However, OPA
does not contain longitudinal dynamics. The bucket is only used for visualization and estima-
tion of momentum acceptance.

If a periodic solution is found, a tune-diagram shows the working point and the resonances
in its vicinity [OPAtune]. After a momentum scan, the resulting chromatic tune footprint is
shown in the diagram. Other modules also will plot their results in the tune diagram (see below).

In order to shift the working smoothly by small amounts, a 2× 2 sensitivity matrix can be set
up, which connects the tune shifts to a scaling factor for the two groups of horizontally and
vertically focusing quadrupoles [OpticTune].

6 Non-linear optimization

The Hamiltonian modes for sextupoles have been calculated in first and second order by
J. Bengtsson [15, 16] and confirmed by C.-x. Wang [17], also including chromatic quadrupole
contributions, and octupoles and decapoles were supplemented in [18], so we don’t need to
repeat these (rather lengthy) results here.

The terms are of the form (taking a first order sextupole term as an example)

hjklmp =
∑

b3lβ
(j−k)/2
x β(l−m)/2

y Dp
x exp i[(j + k)µx + (l +m)µy] [+quadrupoles. . .] , (70)

where the sum is over all (thin) sextupole kicks.

OPA includes the 10 first order sextupole terms (2 linear chromaticities and 8 resonances) and
13 second order sextupole, first order octupole terms (2 quadratic chromaticities, 3 amplitude
dependant tune shifts (ADTS) and 8 octupolar resonances). Decapoles are only considered with
regard to cubic chromaticity. For the resonances, the modes and their complex conjugates are
considered as one term. Linear, quadratic and cubic chromaticities are calculated by numeric
differentiation [ChromLib> ChromDiff] whereas all other quantities are calculated analytically
[ChromLib> DriveTerms].

For optimization of the sextupole pattern, a penalty function is constructed, which is a function
of all sextupole strengths:

P =
∑
jklmp

(
ωjklmp ΩR (2Jx)

(j+k)/2 (2Jy)
(l+m)/2 δp |hjklmp − tjklmp|

)2
(71)

The Hamiltonian modes are multiplied with reasonable betatron amplitudes 2Jx, 2Jy and
momentum range δ, corresponding to desired acceptances of the storage ring, to compare the
effect at the dimensions of the beam size. The factor ωjklmp is a weight manually attached to

16

the corresponding mode. In addition, for the resonant modes a general weighting factor ΩR is
given to increase their weight, because due to interference they are smaller numbers than the
additive, non-resonant terms, but due to resonant amplification they may be more harmful. For
the non-resonant modes, where =(h) = 0, a target value tjklmp can be given, which is always
zero for the resonant modes [ChromLib> Penalty].

Calculations are usually done for one superperiod of the lattice. Scaling the results to many
periods of a storage ring requires multiplication of the resonant terms with a complex factor,
see Appendix A. The phase independant terms are just multiplied with the number of periods,
of course.

A non-linear Powell-optimizer [19] including limits by asymptotic scaling of knobs is used to
suppress the penalty function by varying the sextupole strength. Chromaticity correction can
be done separately or on top by a 2 × 2 matrix connecting two selected chromatic sextupole
families and the linear chromacities.

The first order octupole terms form a linear system, which is solved by SVD [19] with optional
filtering of weight factors to select hard or soft solutions (complete solutions at high octupole
strength or incomplete at moderate strengths). It can run in a “slave mode” to the Powell
minimizer to make the octupoles follow and, for example, keep the ADTS constant.

=⇒ This two-fold scheme has a historical background. It would be possible and interesting, and
probably much faster, to run SVD on the first order sextupole system and even on the tangential
second order system, using the local Jacobian.

=⇒ The non-linear calculations and optimizations are only valid for uncoupled lattices without
vertical dispersion at the non-linear multipoles.

7 Tracking

Three particle tracking routines are implemented, [OPAtrackP] for tracking single particles in
phase space, fourier transform and identification of resonances, [OPAtrackDA] for evaluating
the dynamic apertures, and [OPAtrackT] for calculation of Touschek lifetime based on local
momentum acceptance obtained from tracking. These programs mainly control the GUI, most
of the calculations is done in unit [tracklib] uses by all three.

In order to speed up calculations, series of linear elements (between non-linear thin kicks) are
concatenated to transfer matrices [tracklib> TrackingMatrix]. In tracking the matrices are
multiplied to the particle coordinates, and then a non-linear (or time dependent) thin kick is
applied [tracklib> TMatKick].

=⇒ Particle loss is only checked at the non-linear kick locations, not at peak beta locations,
which are usually at quadrupole centers.

For phase space and dynamic aperture tracking, first the physical acceptance is calculated,
i.e. the silhouette from the linear projection of all apertures to the trackpoint as described in

17

Appendix B, [tracklib> AmpKappa], [OPAtrackDA> TtrackDA.Silhouette]. For tracking
one can select if this acceptance is used as limitation (this would give dynamic aperture including
physical limits) or if a manually set aperture is used (this would give the pure dynamic aperture
if the set value is sufficiently large). The range for probing aperture or phase space is then set
based on this choice [tracklib> Acceptances].

When the reference momentum (momentum of particle to be tracked) is changed, matrix con-
catenation and physical acceptance has to be redone [tracklib> Initdpp]. Dynamic aperture
tracking has three modes, x vs. y with optional, fixed δ = ∆p/p offset, or x vs. δ, or y vs.
δ. The two latter modes require calculation of momentum dependent physical aperture for a
specified momentum range [tracklib> Acc dpp].

Tracking may start at any location, even inside an element. This is in particular important for
proper sampling of local momentum aperture in Touschek tracking [tracklib> TrackingMatrix,

Trackpoint]. In phase space tracking it can be useful to observe the non-linear eigenfigure
inside an element.

=⇒ This feature is only implemented for phase space and Touschek tracking but not for dynamic
aperture tracking (not really needed) .

7.1 Phase space tracking

Starting coordinates of a particle are given either manually or stepped up when using the
ADTS loop [OPAtrackP> TtrackP.butTushClick]. After tracking a number of turns (which
is a power of 2), a fast Fourier transform (FFT) of the particle coordinates at the trackpoint is
calculated [19]. Before a sine window is applied, which allows the frequencies to be interpolated,
since the peak is known to be of sinx/x shape, see [15] and [tracklib> FindPeaks] (and
procedures called therein).

The resonances corresponding to the found frequencies are then “guessed” using the fact, that
the fundamental horizontal tune is subtracted from the frequency in the horizontal spectrum
(and v.v. for the vertical spectrum), i.e. a resonance aQx + bQy is visible at (a − 1)Qx + bQy

in the horizontal spectrum, and at aQx + (b− 1)Qy in the vertical spectrum [15], [tracklib>
ResoGuess] (and procedures called therein).

Phase space tracking is also used for injection simulation: a beam ellipse can be set which is
populated with a number of particles and tracked. Time dependence of kickers is included.

7.2 Dynamic aperture tracking

Probing dynamic aperture proceeds by a grid, not by binary search, in order to avoid fake
large aperture due to trapping the binary search in stable islands. Grid probing is thorough on
the expense of computing time, therefore, in order to early see results, the grid is not probed
sequentially but refined successively [OPAtrackDA> TtrackDA.dagridsetup].

18

7.3 Touschek tracking

Touschek lifetime is calculated as described in appendix C.1 by evaluating the integral over
bunch dimensions and local momentum aperture.

The Touschek module [OPAtrackT] at first serves as a worksheet calculating several parame-
ters based on manual inputs or previous calculations (using bucket and coupling parameters).
Touschek lifetime is integrated based on linear momentum acceptance as obtained from RF-
acceptance and physical aperture limitations, see Eq.81. However, linear calculations only
consider horizontal apertures assuming that there is pure horizontal dispersion. Coupling ef-
fects are only included as vertical emittance affects the scattering rate. Coulomb lifetime is
calculated too by the simple average of Eq.103. It assumes an elliptical beam pipe and takes
into account both apertures. Bremsstrahlung lifetime is closely related to Touschek lifetime
since it also depends on momentum acceptance, see Eq.104.

In a second step local momentum acceptance is calculated from tracking and binary search.
Touschek scattered particles start on-axis with a sudden momentum offset. Synchrotron oscil-
lations are not yet included, i.e. the momentum is assumed to be fixed. Coupling is included,
since it will affect the momentum acceptance found in tracking. Touschek and bremsstrahlung
lifetime are then recalculated using the tracked momentum acceptance.

=⇒ There is an improvised 5-D tracking option, varying the momentum deviation in turn k
simply as δk = δo cos(2πνsk), with νs the synchrotron tune. However, implementation of true
synchrotron oscillations would be straightforward using cavity parameters set for the bucket.
However, setting up the tracking matrix for changed momentum in every turn as implemented
now is inefficient and very slow.

=⇒ Coulomb scattering only includes physical apertures and should be extended by re-using
results from previous dynamic aperture calculations or by including a binary search for maxi-
mum deflection angle before starting. Furthermore, pressure profiles may be imported instead
of assuming a constant pressure.

=⇒ Including misalignments in tracking has been started defining a concatenated misalignment
vector to be applied with the concatenated tracking matrix, but this does not work well yet. Work
is in progress.

8 Orbit correction

The module [OPAorbit] implements a standard orbit correction method as used in many other
lattice codes too: misalignments are applied to the elements, the closed orbit is calculated, the
response matrix is established, how correctors affect the orbit as recorded at the BPMs, and
“inverted” using SVD [19] in order to set the correctors and minimize or zero the orbit at the
BPMs.

Assuming that elements are mounted to girder, correlated misalignments are set in a hi-

19

erarchical manner distinguishing between girder absolute errors, girder-to-girder errors and
element-to-girder errors. The girder structure is established by assigning each element to a
“parent” girder and calculating its location on the girder. In the process compound elements,
for example a magnet containing thin non-linear multipoles, are identified by checking for
zero spaces between adjacent elements, and treated as rigid bodies to assign correlated mis-
alignments, [OPAglobal> GirderSetup]. The response matrix is calculated for the ideal lat-
tice [OPAorbit> GetResponseMatrix] and decomposed. After application of misalignments
[OPAorbit> Torbit.setMisalignments] the periodic closed orbit is searched [OpticPlot>

ClosedOrbit] and corrected [OPAorbit> TOrbit.orbitCorrection].

There are more features to run a loop over many error seeds [OPAorbit> TOrbit.LoopAction],
to get statistical data [OPAorbit> TOrbit.CodStat], and to plot orbit, corrector values and
misalignments.

9 Injection

Calculation of an injected beam trajectory is closely related to orbit correction, since a kicker
is a time-dependent corrector, which however may not be just a dipole in case of a multipole
kicker. Kickers are synchronized by adjusting their delays to the distance from the point of in-
jection, which usually is the start of the lattice structure, [OPAorbit> TOrbit.ButSyncClick].
Calculation then is done in single pass mode not periodic, of course, starting from manually
set injected beam offsets and angles. Tracking of an injected beam ellipse is done in the phase
space tracking module, [OPAtrackP> TtrackP.StartEnsemble, ButBeamRunClick].

10 GeoPlot

Module [OPAGeometry] shows the geometrical layout of the lattice. Presently the elements are
only plotted as flat polygons. Geometric matching is performed by an SVD procedure using
length and angle variables in order to adjust the lattice structure to a target position and angle
[OPAGeometry> TGeometry.ButMatchClick]. Files of geometric data can be exported and
also imported to overplot different lattices.

=⇒ Up to now the elements are represented at flat faces. Extension to 3D-bodies and 3D-view
has been prepared, but is not yet implemented. A hidden surface algorithm would be needed to
get a nice 3D-plot, but perhaps this is beyond the scope of OPA.

11 LGB optimizer

Module [LGBEdit] is used to optimize the field profile By(s) of a longitudinal gradient bend of
given angle, length and maximum field in order to obtain lowest emittance, resp. minimum I5

20

radiation integral. The magnet is divided in slices, and a non-linear minimizer of Powell type
[19] sets the field of the slices while maintaining the total field integral, i.e. deflection angle.

References

[1] V. Ziemann and A. Streun, Equilibrium parameters in coupled storage ring lat-
tices and practical applications, Phys. Rev. Accel. Beams, 25, 050703, 2022.
https://link.aps.org/doi/10.1103/PhysRevAccelBeams.25.050703.

[2] E.D.Courant & H.S.Snyder, Theory of the alternating gradient synchrotron, Ann. Phys.
3,1(1958).
http://ab-abp-rlc.web.cern.ch/ab-abp-rlc/AP-literature/Courant-Snyder-1958.pdf

[3] D.A.Edwards & M.J.Syphers, An Introduction to the physics of high energy accelerators,
Wiley-VCH, 1992.

[4] E.Forrest, Beam Dynamics, Harwood Academic Publishers, Amsterdam 1998.

[5] J.R.Rees, Symplecticity in beam dynamics, SLAC-PUB 9939, 2003.
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-9939.pdf

[6] R.D.Ruth, Single particle dynamics in circular accelerators, SLAC-PUB 4103, 1986.
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-4103.pdf

[7] D. Edward and L.Teng, Parametrization of linear coupled motion in periodic systems,
IEEE Trans.Nucl.Sci. 20, 885 (1973).

[8] D. Sagan, D. Rubin, Linear Analysis of coupled lattices, Physical Review Special Topics–
Accelerators and Beams 2 (1999) 074001.

[9] K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, Teubner
Studienbücher, Stuttgart 1992.

[10] H. Bruck, Circular Particle Accelerators, Los Alamos 1966, LA-TR-72-10.

[11] M. Zisman et al., ZAP user’s manual, Berkeley 1986, LBL-21270.

[12] A. Streun, Momentum acceptance and Touschek lifetime, SLS-Note 18/97.

[13] S. Khan, Simulation of the Touschek effect for Bessy II – a Monte Carlo approach, BESSY-
TB 177/93.

[14] Å. Andersson and A. Streun, Lifetime and acceptance of the SLS storage ring, EPAC-2006,
Edinburgh, THPLS060, p.3421.

[15] J. Bengtsson, Non-linear transverse dynamics, CERN-88-05.

21

[16] J. Bengtsson, The sextupole scheme for the SLS, SLS-Note 9/97,
http://slsbd.psi.ch/pub/slsnotes/sls0997.pdf

[17] Chun-xi Wang, Explicit formulas for 2nd-order driving terms due to sextupoles and chro-
matic effects of quadrupoles, ANL/APS/LS-330, 2012

[18] S. C. Leemann and A. Streun, Perspectives for future light source lattices incorporating
yet uncommon magnets, Phys. ST Rev. Accel. Beams, 14, 030701, 2011.

[19] W. H. Press et al., Numerical Recipes in Pascal, Cambridge 1989.

[20] K. L. Brown, A first- and second-order matrix theory, Stanford 1967, SLAC-75.

[21] A.W.Chao, M.Tigner, Handbook of accelerator physics and engineering, Singapore 1998.

[22] Wiedemann

[23] http://paulbourke.net/papers/conrec/

[24] T. Atkinson et al., Development of a non-liner kicker system. . . , IPAC-2011, San Sebastian,
THPO024, p.3394

[25] http://rosettacode.org/wiki/Arithmetic Evaluator/Pascal

22

A The sextupole Hamiltonian

For the first order sextupole modes the complex factor aN to transform the Hamiltonian mode
for one period into N periods, i.e. hN = aN · h was derived by J. Bengtsson in [15]:

aN~m =
N−1∑
n=0

ein~m~µ =
1− eiN ~m~µ

1− ei~m~µ
, (72)

with ~m = (j−k, l−m) the mode of hijkl and ~µ = 2π(Qx, Qy) the ring tune. Defining ψ = ~m·~µ/2
this can be expressed as

aN~m =
sinψ + sin(2N − 1)ψ

2 sinψ
+ i

cosψ − cos(2N − 1)ψ

2 sinψ
(73)

In the limit N →∞ we may neglect the fast varying term and get

a∞~m =
1

2
+ i

1

2
cotψ −→ |a∞~m | =

1

2 sinψ
(74)

revealing the resonance denominator.

For the second order modes we define∑
	

=
S∑
s=1

s−1∑
s′=1

;
∑
⊕

=
S∑
s=1

S∑
s′=s+1

;
∑
�

=
S∑
s=1

S∑
s′=1

rsrs′e
−i(~m~φs+~m′~φs′) (75)

with rs = (b3L)sβ
(j+k)

2
xs β

(l+m)
2

ys and ~φs = (φxs, φys) containing beta functions and phases of the
sextupole s.

The second order sextupole cross talk terms contributing to the octupolar resonance ~m + ~m′

are given for one period by

h~m~m′ = iA

(∑
⊕
−
∑
	

)
(76)

with A a scalar factor[16]. For N periods this becomes

hN~m~m′ = iA

(
aN−(~m+~m′)

(∑
⊕
−
∑
	

)
+ bN~m~m′

∑
�

)
(77)

with aN as defined above (inserting −(~m+ ~m′) for ~m) and

bN~m~m′ =
−S(N, ~m, ~m′) + S(N, ~m′, ~m)− i · (−C(N, ~m, ~m′) + C(N, ~m′, ~m))

8 sinψ sinψ′ sin(ψ + ψ′)
, (78)

S(N, ~p, ~q) := sin ~p~µ− sin(−N~p)~µ+ sin((1−N)~p+ ~q)~µ− sin((1−N)~p−N~q)~µ (79)

and C the same with cos instead of sin.

For N →∞ we again neglect the fast varying terms and get

b∞~m~m′ =
− sin 2ψ + sin 2ψ′ − i · (− cos 2ψ + cos 2ψ′)

8 sinψ sinψ′ sin(ψ + ψ′)
→ |b∞~m~m′| =

1

4 sinψ sinψ′
sin(ψ − ψ′)
sin(ψ + ψ′)

(80)

23

B Calculation of geometric acceptance

A particle touching an elliptical beampipe of half axis ax and ay fulfills the condition

(
|xo|+

√
Axβx

ax

)2

+

 |yo|+
√
Ayβy

ay

2

= 1

xo, yo are the closed orbit coordinates, in the error free lattice given by dispersion. Betatron
amplitudes are given by

Ax = γx(x− xo)2 + 2αx(x− xo)(x′ − x′o) + βx(x
′ − x′o)2

with the corresponding formula for y. Betatron amplitudes thus are given by the starting
conditions of the tracked particle. For coupled motion at a given and constant ratio of betatron
amplitudes κ, with

A = Ax + Ay Ay = κA Ax = (1− κ)A,

i.e. κ = 0 pure horizontal, κ = 1 pure vertical oscillation, the maximum total amplitude Ã(κ)
accepted by the lattice is the minimum of the limitations from all the elliptical apertures of the
machine: √

Ã(κ) = min
k

(
−pk +

√
p2k − qk

)
with

pk =
a2yk|xok|

√
1− κ

√
βxk + a2xk|yok|

√
κ
√
βyk

nk

qk =
(aykxok)

2 + (axkyok)
2 − (axkayk)

2

nk
nk = a2yk(1− κ)βxk + a2xkκβyk

The contour of the geometric acceptance in the (x, y) plane at the location of the track point
(t) is thus given by

x̃(κ) = xot ±
√

(1− κ)Ã(κ)βxt ỹ(κ) = yot ±
√
κÃ(κ)βyt κ = 0 . . . 1

C Beam lifetime calculation

In a low emittance electron storage ring, the beam lifetime is determined by three processes:
Touschek scattering of two electrons turning transverse into longitudinal momentum exceed-
ing the momentum acceptance, elastic (Coulomb) scattering on residual gas nuclei causing
transverse momenta leading to losses at beam pipe apertures, and inelastic (bremsstrahlung)
scattering on residual gas nuclei leading to loss of momentum exceeding the momentum accep-
tance.

24

Lifetimes are added inversely no matter if they are two-particle processes like Touschek scat-
tering following a hyperbolic decay or one-particle processes like gas scattering following an
exponential decay, because lifetime values are extrapolations of the loss rate to zero current,
and the loss rates just add up [14].

C.1 Touschek lifetime

The non-relativistic Touschek lifetime formulae is given by [10] [11] [12]

1

T
=

r2ecq

8πeγ3σs
· 1

C

∮
C

F (ζ(s))

σx(s)σy(s)σx′o(s)(δacc(s))2
ds with ζ(s) :=

(
δacc(s)

γσx′o(s)

)2

.

re is the classical electron radius, q the bunch charge, σs the bunch length (assumed to be
constant along the lattice), C the machine circumference, σx and σy the transverse rms beam
envelopes and σx′o the divergence for x ≈ 0, given by

σx′o(s) =

√√√√εx +H(s)σ2
δ

βx
,

with σδ the rms energy spread and H the lattice invariant.

δacc(s) is the local lattice momentum acceptance, which is the minor of the lattice and the RF
acceptance. In the linear case, the lattice momentum acceptance at s = so is given by

δLacc(so) = min

 ax(s)√
Hoβx(s) + η(s)

 (81)

where ax is the horizontal aperture. In the non-linear case it is obtained from tracking.

The ”Touschek function” F (ζ) is defined as

F (ζ) =
∫ 1

o

(
1

u
+

1

2
ln

1

u
− 1

)
e−ζ/u du

For small arguments ζ < ζsmall = 0.0013 the asymptotic expression F (ζ) = ln(E/ζ) − 3/2 is
used, with E = 0.5772 Euler’s number.

For large arguments, F becomes very small and is dominated by rounding errors, so for ζ >
ζbig = 22.8 it is set to F (ζbig) = 10−16 (usually lattice locations where this happens are irrelevant
anyway for the final lifetime result).

For ζsmall < ζ < 10 a fair approximation is given by a 7th-order polynomial

F (ζ) ≈ exp
7∑

k=0

Ak(ln ζ)k, with
A = { −3.10811,−2.19156,−0.615641,

−0.160444,−0.0460054,−0.0105172,
−1.31192 · 10−3,−6.3898 · 10−5 }

25

The agreement within ±2.5% compared to the integration is acceptable considering that the
integral itself deviates up to 10% from detailed Monte Carlo simulations of Touschek scatter-
ing [13].

Note, that the classical non-relativistic formula used here is appropriate for low emittance
storage rings, where Touschek scattering has a dominant effect, because due to small emittance,
the transverse momenta σpx = βγmocσx′o are not relativistic (here β, γ are the relativistic
parameters).

It is interesting to compare the numbers for the low emittance light source MAX IV at 3.0 GeV
and for the compact light source AURORA-1 at 575 MeV:

In the MAX-IV storage ring σpx varies around the lattice. High values are found in the center
of the bending magnets, where H > 0 and βx is small. In MAX IV we have βx = 0.98 m,
H ≈ 0.0015 m, εx = 0.33 nm, σδ = 7.7 · 10−4 and γ = 5870. This results in a value of
σpx = 0.21moc and a transverse velocity of vx = 0.2c.

In AURORA-1 σpx is constant. With βx = 0.63 m, H = 0.99 m (!), εx = 1670 nm, σδ = 6.3·10−4

and γ = 1125 we get σp = 2.04moc and vx = 0.9c.

Large emittance and large H have more effect than higher beam energy. So the non-relativistic
approximation is applicable to MAX IV at 3 GeV but not to AURORA at 575 MeV.

C.2 Coulomb scattering

Coulomb or elastic scattering is deflection of electrons by residual gas nuclei. Electrons are
lost if the deflection angle exceeds the machine acceptance. The differential cross section of
Rutherford scattering of electrons (one unit charge) is given by

dσ

dΩ
=

(
Ze2

8πεomoγ(βc)2

)2
1

sin4(θ/2)
(82)

with Z the charge multiplicity of scattering nuclei, Ω solid angle and θ scattered angle. For
relativistic electrons, and using the ”classical electron radius”

re =
e2

4πεomoc2
= 2.82 · 10−15 m −→ dσ

dΩ
=
Z2r2e
4γ2

1

sin4(θ/2)
(83)

The cross section σ for losses is obtained from integration over all angles θ which are not
accepted by the machine aperture. We distinguish three cases, and to save writing we define σ̄
without the leading constants.

1. The one-dimenional acceptance: we take the limiting polar angle θ̂ as given following
Wiedemann [22] (Vol.I, Ch.11):

σ̄ =
∫
lost

dσ̄

dΩ
dΩ =

∫ 2π

0

∫ π

θ̂

sin θ

sin4(θ/2)
dθ dφ = 2π

2

tan2(θ̂/2)
(84)

26

Since the limiting angle in a storage ring is rather small, we expand the tangens and get

σ̄ ≈ 16π

θ̂2
(85)

The smaller of horizontal and vertical acceptance angles is used as a worst case estimate.

Figure 1: Rectangular and elliptic acceptances

2. The rectangular acceptance. We reproduce Wiedemann’s calculation with angles θ̂x, θ̂y:
Depending on the azimuth angle, losses occur horizontally and vertically, where the angle

φ̂ = arctan

(
θ̂y

θ̂x

)
(86)

splits the two regimes, see fig. 1, left. Thus the integral is split in two and multiplied by four,
since the situation is the same in all four quadrants:

σ̄ = 4

(∫ φ̂

0

∫ π

θ̂x
cosφ

sin θ

sin4(θ/2)
dθ dφ+

∫ π/2

φ̂

∫ π

θ̂y
sinφ

sin θ

sin4(θ/2)
dθ dφ

)
(87)

Calculating the integral over θ as before and expanding the tangens for small angles gives

σ̄ = 32

∫ φ̂

0

cos2 φ

θ̂2x
dφ+

∫ π/2

φ̂

sin2 φ

θ̂2y
dφ

 (88)

= 8

 π

θ̂2y
+ sin(2φ̂)

 1

θ̂2x
+

1

θ̂2y

+ 2φ̂

 1

θ̂2x
− 1

θ̂2y

 (89)

Using Wiedemann’s definition R = θ̂y/θ̂x this can be written as

σ̄ =
16π

θ̂2y

F

2π
with F = π + sin(2φ̂) (R2 + 1) + 2φ̂(R2 − 1) (90)

3. The elliptic acceptance. From the basic ellipse geometry, see fig. 1, right,(
θx

θ̂x

)2

+

(
θy

θ̂y

)2

= 1 θx = θ cosφ, θy = θ sinφ , (91)

27

follows for the length of the radius vector

θ(φ) =
1√

cos2 φ

θ̂2x
+ sin2 φ

θ̂2y

. (92)

As before the cross section is obtained from the four quadrants

σ̄ = 4
∫ π/2

0

∫ π

θ(φ)

sin θ

sin4(θ/2)
dθ dφ = 4

∫ π/2

0

2(
tan

[
1
2

1√
cos2 φ/θ̂2x+sin2 φ/θ̂2y

])2 dφ (93)

After expanding the tangens again, the integral is easy to solve:

σ̄ = 32
∫ π/2

0

cos2 φ

θ̂2x
+

sin2 φ

θ̂2y

 dφ =
16π

2

 1

θ̂2x
+

1

θ̂2y

 (94)

The three approximations give following values in terms of

f = 16π/σ̄, (95)

which will be proportional to the lifetime:

1-D formula and elliptic for θ̂x = θ̂y := θ̂ (round acceptance): f = 1.00 θ̂2

Rectangular for θ̂x = θ̂y := θ̂ (square acceptance): f = 1.22 θ̂2

Rectangular and elliptic for extreme cases θ̂x >> θ̂y := θ̂ or θ̂y >> θ̂x := θ̂ (slits): f = 2.00 θ̂2

The loss rate is given by product of cross section for losses and “luminosity”, i.e. incoming
particles (electrons) per time ∆T multiplied with target particles (nuclei) present in an area A.
The interaction length is given by ∆Tβc, and, multiplied with the area gives the volume V :

Ṅ = σ
N

∆T

Nnuclei

A
= σNe(βc)

Nnuclei

V
(96)

The last fraction is just the density of nuclei in space. The number of nuclei is the number of
gas molecules Ngas multiplied with the number N of atoms per molecule. The molecule number
is the product of Avogadro’s number NA = 6.02 · 1023 mol−1 with the amount of gas measured
in moles n. It is given by the ideal gas equation as function of volume V , temperature T and
pressure P :

Nnuclei = NNgas Ngas = NAn n =
PV

RT
(97)

Here R = 8.31 J/K/mol is the universal gas constant. When inserting the volume is eliminated
and we get the exponential decay with the Coulomb scattering beam lifetime τ :

Ṅ

N
= σβ

cNA

R

NP
T

=
1

τ
−→ N(t) = Noe

−t/τ (98)

28

We now use the calculated cross section from eq.95 and insert the leading constants from eq.83:

1

τ
=

4πcr2eNA

R
· 1

γ2
· NZ

2P

T
· 1

f
(99)

The four fractions contain constants, beam properties (energy), gas properties and storage ring
properties (acceptance). The constants may be combined in one number

K = 2168 m s K/kg (100)

in SI-units2. We confirm the formula from Wiedemann, who uses GGS units and gives beam
lifetime ([22] Eq.11.12) in hours for the special case of nitrogen (Z = 7, N = 2) at 0◦C
(T = 273 K), with the pressure measured in nTorr (1 Torr = 133.3 Pa) , beam energy in GeV
and limiting angle in mrad (i.e. acceptance in mm.mrad), for the 1-D case:

τ [h] = 10.25
(E [GeV])2

P [nTorr]
(θ̂ [mrad])2 (101)

The acceptance of the storage ring in linear approximation is obtained as silhouette of all local
apertures scaled by the local beta functions, see sec.B. The dynamic acceptance is obtained
from tracking including local apertures. Physical acceptance has a polygonal, convex shape
which is something between ellipse and rectangle, dynamic acceptance can be anything, but
should be reasonably smooth and convex if the nonlinear dynamics has been optimized well.

We prefer the elliptic approximation for the following reasons: it fits quite well, it is not too
optimistic like the rectangular one, and it is simple (see eq.94), which allows a straightforward
averaging to be implemented:

Eq.99 gives a loss rate for given acceptance angles contained in f . This angle is given by

θ̂z(s) =

√
Az
βz(s)

z = x, y (102)

with Az the invariant betatron amplitude of the acceptance (denoted εA by Wiedemann) and
βz(s) the local beta function. Total loss rate is then obtained by averaging over all local loss
rates. In case of the 1-dimensional or elliptic case this is very simple since

1

τ
∝ 1

θ̂2z
=
βz
Az

Due to the linear dependence just averaging over the beta-functions, as usually done in the
1-dimensional case, is completely sufficient in the elliptic case too, whereas it is not sufficient
in the rectangular case. OPA 4 only uses the elliptic case:

1

τ
=
K

γ2
· NZ

2P

T
· 1

2

(
〈βx〉
Ax

+
〈βy〉
Ay

)
(103)

2The implementation of the rectangular aperture in our paper [14] is only correct for ρ ≤ 1, but else it is
valid; however K was defined differently, using only half the value.

29

The acceptances are just given by the points of the physical or dynamic acceptance, where the
polygon cuts the y or x axis and the beta function at track point, i.e. Ax = [x(y = 0)]2/βx,
and vice versa for Ay. In case of an asymmetric shape we take the smaller value.

=⇒ If dynamic acceptance is significantly smaller than the physical one, the lifetime calculation
should be preceded by a binary search for maximum stable amplitudes in tracking.

C.3 Bremsstrahlung

Bremsstrahlung or inelasic scattering leads to an energy loss of the particle and thus is a process
similar to Touschek scattering. Different formulae are found in literature for cross section or
probability of energy loss, which do not agree, although discrepancies cause only a few percent
variation for the relevant range of parameters. We trust Wiedemann, who introduces the
appropriate approximations (relativistic, thin gas, energy acceptance � energy etc.) and gives
a simple equation for the loss rate:

1

τ
=

16αcr2eNA

3R
· NZ

2P

T

[
ln
(

183

Z1/3

)
+

1

18

]
· ln

(
1

δac

)
(104)

The three terms combine natural constants (α ≈ 1/137 the fine structure constant), gas prop-
erties and storage ring properties. The latter contains only the relative energy acceptance δac.
The loss rate does not depend on electron energy, except the fact that it is highly relativistic.

A bremsstrahlung event corresponds to a sudden loss of energy. The electron thus behaves like
a Touschek scattered particle, but while Touschek scattering is a two-particle event, where one
electron loses, the other one gains energy, energy is only lost in a bremsstrahlung event.

In Touschek calculations (sec. C.1) local positive and negative momentum acceptances, δ±ac (s)
are obtained from tracking. Thus it is straightforward to re-use these data for a more precise
than usual bremsstrahlung lifetime calculation. However, unlike Touschek, the dependence on
momentum acceptance is weak. We just use in the above equation the average

〈ln
(

1

δ−ac

)
〉 (105)

We use only the negative acceptance. (In 6-D Touschek tracking it’s value would imply limita-
tions on the positive side due to synchrotron oscillations.)

D RF bucket plot

In a storage ring, the longitudinal equations of motion are approximately decoupled,

δ̇ = f(φ) = −∂H
∂φ

∂f

∂δ
= 0 (106)

φ̇ = g(δ) =
∂H

∂δ

∂g

∂φ
= 0 (107)

30

with δ = ∆p/p ≈ ∆E/E and φ = 2πc∆t/λ, so the Hamiltonian, from which they originated,
is immediately obtained from integration:

H = −
∫
f dφ+

∫
g dδ (108)

Since synchrotron motion is slow, differentiation is approximated by

φ̇ =
∆tφ

To
δ̇ =

∆tδ

To
, (109)

with To = C/c the recirculation time and C the ring circumference. Note that ∆t is the
change in one recirculation time, whereas ∆ indicates the deviation from a reference particle
propagating on the closed orbit.

Path length or time of flight is given by the momentum compaction, including higher orders:

∆ts/C = α1δ + α2δ
2 + . . . (110)

=⇒ g(δ) =
∆tφ

To
=

2πc

λ

n∑
k=1

αkδ
k (111)

Energy change in the RF cavity is given by

∆tE = eV1 sinφ (112)

with V1 the RF voltage. Radiation loss per turn Uo gives the synchronous phase,

Uo = eV sinφs, (113)

which is the center of motion for phase oscillations. Thus

∆t∆E = eV (sin(φ+ φs)− sinφs) (114)

If there are harmonic cavities, we assume for simplicity, that the are at zero phase and all
acceleration is done by the fundamental only; however this is an unnecessary restriction:

∆t∆E = −
n∑
k=2

eVk sin(kφ) (115)

=⇒ f(φ) =
∆tδ

To
≈ e

EoTo

[
V1 (sin(φ+ φs)− sinφs) + sh

n∑
k=2

Vk sin(kφ)

]
(116)

Here we have to distinguish two cases:

α1 < 0 −→ 0 < φs < π/2, sh = −1

α1 > 0 −→ π/2 < φs < π, sh = +1

31

Integration gives the Hamiltonian:

H =
2πc

λ

n∑
k=1

αk
δk+1

k + 1
+

e

ToEo

[
V1 (cos(φs + φ) + φ sinφs) + sh

n∑
k=2

Vk
k

cos(kφ)

]
. (117)

Since the equations of motion are decoupled, fix points are simply given by the roots

f(φ)
!

= 0 and g(δ)
!

= 0. (118)

A fixpoint is a combination of two roots, i.e. Fij = (φoi, δoj).

The Jacobian tells if it is elliptic or hyperbolic: The mapping

φ← φ+ g(δ) δ ← δ + f(φ) (119)

has the Jacobian

J =

(
1 ∂g/∂δ

∂f/∂φ 1

)
(120)

and eigenvalues

|J − µ| = 0 −→ µ = 1±
√
∂f

∂φ
· ∂g
∂δ
, (121)

which are elliptic/hyperbolic if the product of the derivatives is negative/positive. The hyper-
bolic fixpoints are the origins of the separatrices between stable and unstable areas.

Practically, the longitudinal phase space is plotted by application of a contour plot program
[23] to the Hamiltonian. Fixpoints are obtained from a root finder, the characteristics from
the derivatives at the roots. Finally separatrices are plotted as contours starting at hyperbolic
fixpoints. [Bucket> CalcBucket]

E The Hamiltonian for transverse beam dynamics

E.1 The curvilinear system

A beam consists of particles travelling closely along a curve in space, therefore it is conve-
nient to introduce a local curvilinear coordinate system traveling along the design orbit of the
accelerator, which is a curve in space:

~r(s) = ~ro(s) + ~̂x(s) · x(s) + ~̂y(s) · y(s) (122)

The vectors {~̂x; ~̂s; ~̂y} form a right hand side system of unit vectors [6], with ~̂s tangential to the

curve, pointing in forward direction, ~̂x radial to the curvature of the curve, pointing away from
the center of curvature, and ~̂y = ~̂s× ~̂x. These unit vectors are defined a priori, i.e. they define
the curve of our choice, whereas x(s) and y(s) will be solutions of the equations of motion in

32

the curvilinear system. The independent coordinate s is the length of the curve, measured from
some point. We neglect here a possible torsion of the curve.

Derivatives of the vectors with respect to s [5, 2]:

d~ro(s)

ds
= ~̂s because ~ro(s+ ds) = ~ro + ~̂s · ds (123)

Following the curvature by an angle dφ = hds with h = 1/ρ the local curvature (inverse radius
of curvature) applies a rotation around the y-axis:

~a+ d~a =

 cos dφ − sin dφ 0
sin dφ cos dφ 0

0 0 1

 · ~a dφ�1−→ d~a =

 0 −h ds 0
h ds 0 0

0 0 0

 (124)

The unit vectors are given by

~̂x =

 1
0
0

 ~̂s =

 0
1
0

 ~̂y =

 0
0
1

So the derivatives follow as

d~̂x

ds
= h~̂s

d~̂s

ds
= −h~̂x d~̂y

ds
= 0 (125)

E.2 The relativistic Hamiltonian

In the most general form, the Hamiltonian with electromagnetic fields is given by

Ho = c

√
(~p− q ~A)2 +m2

oc
2 + qV (126)

with m, q particle mass and charge, V the electrostatic potential and ~A the magnetic vector
potential. The underline indicates that the vector is expressed in a global, cartesian coordinate
system. ~p is the canonical momentum, not the kinetic momentum, which would be given by

m~v = ~p− q ~A. (127)

The Hamilton-Jacobi equations of motion,

ẋk =
∂Ho

∂p
k

ṗ
k

= −∂Ho

∂xk
, (128)

apply only to the canonic coordinates ~x and ~p, but not to the kinetic momentum.

33

E.3 Canonical transformations in general

This is well explained in [5]: Canonical transformations perform a coordinate transformation
of the Hamiltonian from an old set of canonical variables {p; q} to a new set of variables
{P ;Q} which are canonical too. So, a canonical transformation is more than just a coordinate
transformation.

The transformation is performed through a generating function F . Its explicit time dependency
is added to the Hamiltonian:

Hnew(P,Q, t) = Hold(p, q, t) +
∂F

∂t
(129)

Four types of generating functions are distinguished, depending on which set of old and new
coordinates they contain:

F1(q,Q, t), F2(q, P, t), F3(p,Q, t), F4(p, P, t)

One uses the one which is most convenient for the problem given.

As an example, let’s use F2. We want the equation of motion in the new coordinates:

Q̇k =
∂Hnew(P,Q, t)

∂Pk
=

∂

∂Pk

(
∂Hold(p, q, t) +

∂F2(q, P, t)

∂t

)
=

∂

∂t

∂F2(q, P, t)

∂Pk

→Qk =
∂F2(q, P, t)

∂Pk

ṗk = −∂Hold(p, q, t)

∂qk
= − ∂

∂qk

(
∂Hnew(P,Q, t)− ∂F2(q, P, t)

∂t

)
=

∂

∂t

∂F2(q, P, t)

∂qk

→pk =
∂F2(q, P, t)

∂qk

For other cases, see [5] or calculate analogously.
The signs for the four cases are as +−, ++, −−, −+.

E.4 The contact transformation

Now we want to apply a canonical transformation to transform the general Hamiltonian from
eq.126 into the curvilinear system. We have the new coordinates q = {x; s; y} and the old
momenta P = {px; py; pz}, so we need a generating function of third type [5]. A possible
solution is given by

F3(~p, ~r, t) = −~p • ~r(s) (130)

with ~r(s) from eq.122 (• = scalar product). The old coordinates (we are not interested in) are
obtained from

x = −∂F3

∂px
= ~rx etc,

34

i.e. ~r(s) = ~r(s), which is trivial and was just the definition of our curve in space. What we
need are the new momenta in the curvilinear system:

ps = −∂F3

∂s
= ~p •

∂~ro(s)
∂s

+
∂~̂x(s)

∂s
· x+

∂~̂y(s)

∂s
· y

 (131)

From eqs.123 and 125 follows:
ps = ~p • ~̂s · (1 + hx) (132)

For the other components we get directly with eq.122

px = ~p • ~̂x py = ~p • ~̂y (133)

Since F3 does not contain an explicit time dependence, the new Hamiltonian is the old:

H1 = Ho (134)

It is important to note, that ps is not the tangential component of the momentum (which would

be just given by ~p • ~̂s), but the new ~p is the canonical momentum in the curvilinear system.

The next step is handled differently by the different authors: In refs.[6, 2, 3] the vector potential
is considered a canonical vector potential and transformed in the same way as the momentum,
but refs.[16, 5] transform only the canonical momentum, since transforming both would imply
a transformation of the kinetic momentum (see eq.127), which is not canonic. We follow the
second line, since it will lead to the correct dipole focusing term in the simplified Hamiltonian
using an obvious definition of the vector potential. So, we insert the canonical transformation
in the components of the momentum, i.e. its projection along the new coordinate axis:

~p • ~̂s =
ps

1 + hx
~p • ~̂x = px ~p • ~̂y = py

and insert this into the Hamiltonian:

H1 = c

√(
ps

1 + hx
− qAs

)2

+ (px − qAx)2 + (py − qAy)2 +m2
oc

2 + qV (135)

E.5 Change of variable t→ s

For beam transformation we would like to use s, the length along the curve describing the
accelerator as the independent variable rather than the time t [3]. The equations of motion are
given by (y not shown):

ẋ =
∂x

∂t
=
∂H1

∂px
, ṗx = −∂H1

∂x
ṡ =

∂H1

∂ps
, ṗs = −∂H1

∂s

Just inverting the last two equations we get

t′ =
∂t

∂s
=

1

ṡ
=

∂ps
∂H1

H ′1 =
∂H1

∂s
= −∂ps

∂t

35

and for x (and for y the same way)

x′ =
∂x

∂s
=
∂x/∂t

∂s/∂t
=
∂H1/∂px
∂H1/∂ps

H1 must not change if we vary the canonical momenta, i.e.

0 = dH1 =
∂H1

∂px

∣∣∣∣∣
ps

dpx +
∂H1

∂ps

∣∣∣∣∣
px

dps→
∂ps
∂px

∣∣∣∣∣
H1

= −∂H1/∂px
∂H1/∂ps

→x′ = −∂ps
∂px

p′x =
∂ps
∂x

(136)

Now−ps plays the role of a new Hamiltonian for a new set of coordinates, given by {x, px, y, py, H1, t},
so we define H2 = −ps, with the equations of motion

x′ =
∂H2

∂px
, p′x = −∂H2

∂x
, H ′1 =

∂H2

∂t
, t′ = −∂H2

∂H1

, (137)

The new Hamiltonian is obtained by solving eq.135 for −ps:

H2 = −ps = −(1 + hx) ·

√(H1 − qV
c

)2

−m2
oc

2 − (px − qAx)2 − (py − qAy)2 + qAs

 (138)

E.6 Approximations

Several approximations will be introduced, which are justified at least for large high energy
machines [3], and make it much simpler for us to proceed:

• High relativistic: E = pc

• Static: ∂ ~A/∂t = 0

• No electric fields, i.e. no energy gain: V = 0. The H1 from eq.135 is just the total energy
of the particle: H1 = E.

• No fringe fields, i.e. piece-wise constant, hard-edge fields: Bs = 0. In cartesian and
cylindrical coordinates, which are the two cases of a tangential coordinate system to a
torsion-free curve in space we consider, the curl operator gives

Bs =
∂Ax
∂y
− ∂Ay

∂x

This allows Ax = Ay = 0→Bx =
∂As
∂y

By =
∂As
∂x

36

• Paraxial approximation: particles stay close to the curve, and their transverse momenta
are small compared to the total momentum, i.e. px,y � p.

The first four items simplify the Hamiltonian from eq.138 as

H2 = −(1 + hx)

√√√√E2/c2 −m2
oc

2︸ ︷︷ ︸
p2

−p2x − p2y + qAs

 (139)

The fifth item allows to expand the square root, since px,y/p� 1:

H2 = −(1 + hx)

(
p ·
(

1−
p2x + p2y

2p2

)
+ qAs

)
(140)

Finally we refer to a reference momentum po the machine is designed for, and consider particles
with relative momentum deviations

δ =
p− po
po

(141)

Introducing po and δ in the Hamiltonian gives

H̃2 = −(1 + hx)

(
1 + δ −

p̃2x + p̃2y
2 (1 + δ)

+
q

po
As

)
(142)

Here we introduced dimensionless momenta normalized to the reference momentum p̃x,y =
px,y/po and also normalized the Hamiltonian, such that H̃2 = H2/po is dimensionless.

E.7 Modeling the vector potential

The curve in space could be any curve, but we restrict it to a curve which is composed from
pieces which are either straight (cartesian geometry) or curved with constant curvature (cylin-
drical geometry) - like tracks of a toy train. In both geometries the magnetic field, given by
~B = ∇× ~A, simplifies due to Ax = Ay = 0:

In cartesian geometry this gives

Bx = −∂As
∂y

By = +
∂As
∂x

(143)

In cylindrical geometry we have to use the actual radius, given by ρ = ρo + x = 1+hx
h

, with
h the local design curvature of our curve. Using the curl in cylindrical coordinates from any

mathematics book, we have to identify ~̂ρ = ~̂x, ~̂φ = ~̂s, ~̂z = ~̂y. This yields

Bx = −∂As
∂y

By =
h

1 + hx
As +

∂As
∂x

(144)

37

Since there are no currents, we have ∇× ~B = 0.

In cartesian geometry a possible expression for ~A is given by a multipole expansion:

q

po
As = −<

∞∑
n=1

ian + bn
n

(x+ iy)n (145)

We prove that ∇× ~B = 0:

∇× ~B = ∇×∇× ~A =
∂2As
∂x2

+
∂2As
∂y2

∂2As
∂x2

= −po
q
<
∑

(n− 1)(ian + bn)(x+ iy)n−2 = −∂
2As
∂y2
→ok.

Here bn refer to regular multipoles (n = 1 dipole, n = 2 quadrupole etc.) and an to the corre-
sponding skew multipoles, which we will not consider further for now. For the field components
we obtain immediately

By = −po
q

(b1 +b2x+ b3(x
2 − y2) . . .)

Bx = −po
q

(+b2y + b3xy . . .)
(146)

The cylindrical geometry is much more complicated. Calculating ∇ × ~B in cylindrical co-
ordinates is simplified by the assumption of a piece-wise constant field, i.e. Bs = 0 and
∂B(x, y)/∂s = 0:

∇× ~B =

(
∂Bx

∂y
− ∂By

∂x

)
· ~̂s !

= 0

Inserting eq.144 we obtain

∇× ~B = −~̂s ·

∂2As
∂x2

+
∂2As
∂y2

+
h

1 + hx

∂As
∂x
−
(

h

1 + hx

)2

As

 !
= 0 (147)

A solution of this differential equation for As is given by [16]

q

po
As = −b1

2

1 + hx

h
(148)

Calculating the magnet field from eq.144 gives

By = −po
q
b1 (149)

which is just dipole field as it exists in a sector magnet.

Considering combined function magnets (i.e. bending magnets with gradients as commonly used
in accelerators), a similar multipole representation of the vector potential can be calculated,
but is rather complicated (see p.362 in [4]).

38

Assuming a separate function lattice, we restrict ourselves to pure dipole fields so far. The
simplified Hamiltonian we will find thus is not valid for combined function magnets. However
in large rings, with strong gradients and low curvatures, the common but inconsistent procedure
to treat the dipole component in cylindrical geometry and the higher multipoles in cartesian
geometry, is good enough.

E.8 The simplified Hamiltonian

Assuming a separate function machine with pure sector magnets (cylindrical geometry) and
cartesian quadrupoles and higher multipoles, we express the vector potential As by the sum of
eqs.148 and 145 and introduce it into eq.142. Further, we consider only regular multipoles and
show only the first terms of the multipole sum:

H̃2 = −(1 + hx)

(
1 + δ −

p̃2x + p̃2y
2 (1 + δ)

)
+
b1
2

(1 + hx)2

h
+
b2
2

(x2 − y2) + . . . (150)

Here the multiplication of all terms with (1 +hx) was not executed for the multipole sum since
we assumed all these multipoles as cartesian, i.e. h = 0.

Now the dipole field is adjusted to provide the curvature h, i.e. we set h = b1, but note that these
two quantities are not necessarily identical. Subtracting constant terms, which are irrelevant
for the equations of motion from the Hamiltonian, we thus arrive at

H = H̃2 +
1

2
+ δ = (1 + hx)

p̃2x + p̃2y
2 (1 + δ)

− b1xδ +
b21
2
x2 +

b2
2

(x2 − y2) + . . . (151)

In a last step, the curvature at the kinematic term is dropped, which is justified for large rings.
Also including again the sextupole term, we finally arrive at the simplified Hamiltonian useful
for transverse dynamics in large rings:

H =
p̃2x + p̃2y
2 (1 + δ)

− b1xδ +
b21
2
x2 +

b2
2

(x2 − y2) +
b3
3

(x3 − xy2) + . . . (152)

E.9 Equations of motion

Since we changed the independent variable from t to s, the equations of motions are

x′ =
∂H
∂p̃x

=
p̃x

1 + δ
=
px
p

(153)

which is just the divergence angle (for x′ � 1) (same for y′), and

p̃′x = −∂H
∂x

= b1δ − (b21 + b2)x− b3(x2 − y2) (154)

39

p̃′y = −∂H
∂y

= b2y + 2b3xy (155)

Differentiating again and inserting gives the differential equation

x′′ =
p̃′x

1 + δ
=

b1
1 + δ︸ ︷︷ ︸
h

·δ − b21 + b2
1 + δ︸ ︷︷ ︸
K

·x− . . . (156)

Note the different scaling of b1 with momentum for the δ and x-terms! The solution is

x(s) = C(s)xo +
S

p
x′o + (1− C(s))

h

K
δ with p =

√
|K| (157)

x′(s) = −K
p
S(s)xo + C(s)x′o + S(s)

h

p
δ

with p =
√
|K|, and C(s) = cos ps or cosh ps, S(s) = sin ps or sinh ps, for positive or negative

K.

F List of OPA units

OPA is made from Free Pascal units [.pas] and Lazarus forms [.lfm] if the Pascal unit
provides a GUI. Some units are “frames”, i.e. components which are embedded in a GUI.
Below names of the units are given with their approximate size, a list of used units and a short
description of the function. The listing of units includes only the OPA units not the standard
Lazarus units. Furthermore, a few image files [.ico, .bmp] are included to draw symbols on
buttons.

F.1 General

opa.lpr (4.0k)

This is the main program, which allocates the Pascal units as listed below.

opamenu.pas/.lfm (23.2k)

uses OPAglobal, OPAEditor, TextEditor, OpticView, OPAChroma, OPACurrents, OPAmomentum, OPAGeometry, OPAtune, OPAtrackP,

OPAtrackT, OPAtrackDA, OPAorbit, LGBeditor, Bucket, opatest

The main menu to read and write files, and to start the various calculations.

OPAglobal.pas (140.7k)

40

uses MathLib, ASaux

The largest unit containing definitions of global constants, types and variables and many pro-
cedures for the following tasks:

• Initialization of program [>GlobInit,OPAInit].

• Set defaults for user settings, save and restore settings, [>DefReadFile...]

• Read a lattice file and build the internal structure of elements and segments, expand the
nested segments structure recursively into the element line-up of a lattice, and write a
lattice file, [>MakeLattice, WriteLattice].

• Create, delete, compare elements, segments and variables; get and set parameters.

• Perform algebraic calculations using an adaptation of [25].

• Miscellaneous type conversions.

• Status flags and Messages.

• Everything which did not fit elsewhere.

=⇒ This unit grew large and heterogenous over the years and should be split up.

OPAElements.pas (82.6k)

uses OPAglobal, MathLib;

A beam as defined by its orbit, (normal mode) beta functions, dispersion and coupling matrix
is propagated through an element [>Driftspace,Quadrupole...]

Internally the procedures [>MCC prop] and [>MBD prop] perform the transfer for coupling and
non-coupling eleements.

Depending on flags set, Kickers, non-linearities, misalignments etc. are switched on or off, and
radiation integrals, path length etc. are calculated.

For display OPA subdivides elements in slices, where the slice length corresponds to one pixel
on the screen. This is handled by the procedures [>slice...] defining matrices for the slices
and for the skipped parts (i.e. out of view range) of the element.

Internal private procedures calculate phase advances and transform between physical, normal
modes and normalized normal mode coordinates.

MathLib.pas (55.6k)

This is a library of mathemical functions: definition of types and operations with vectors,
matrices and complex numbers. It further contains some special functions, among them the
Touschek integral function, and implementations of Powell’s minimizer, LU decomposition and

41

Singular Value Decomposition taken from [19], but extended to dynamic array size. OPA does
not link external libraries (except the Lazarus libraries of course), but all algorithms needed
are included in the code.

F.2 Editors

OPAEditor.pas/.lfm (9.7k)

uses EdElCreate, EdElSet, EdSegSet, OPAGlobal, ASaux

The “OPA Editor” allows elements, variables and segments to be created and modified interac-
tively. Global parameters like energy and default aperture can be set, and a comment may be
added. Furthermore some convenience functions allow all dipoles to be inverted or undulators
to be expanded into series of dipoles and drifts.

EdElCreate.pas/.lfm (3.5k)

uses EdElSet, EdSegSet, OPAGlobal

Create a new element from a dopdown list.

EdElSet.pas/.lfm (28.4k)

uses OPAglobal, OpticPlot, ASfigure, ASaux

Table to edit all parameters of an element or a variable. Some fields may contain algebraic
expressions to calculate parameters from variables. This procedure is called in four different
ways, for elements and for variables, and from editor or from optics design. For (iron domi-
nated) magnets, a possible pole-profile is plotted [>PlotPro].

EdSgSet.pas/.lfm (11.9k)

uses OPAglobal, ASaux

A table to set up or modify a segment, which is a line-up of elements and segments.

texteditor.pas/.lfm (5.2k)

uses OPAglobal

A simple Notepad-like text editor to edit the lattice file; used as an alternative to the interactive
“OPA Editor” for the experienced user.

42

LGBeditor.pas/.lfm (19.1k)

uses OPAglobal, MathLib, ASfigure, ASaux

LGBeditorLib.pas (13.9k)

uses OPAglobal, ASfigure, ASaux

These two procedures optimize the field profile of a longitudinal gradient bend in order to
minimize quantum excitation, i.e. the I5 radiation integral. Magnet type, length, peak field
and number of slices are set before starting a Powell minimizer. The first procedure is mainly
the GUI and the minimizer, the second one contains physics and plotting.

F.3 Optics Design

OpticView.pas/.lfm (32.3k)

uses OPAglobal, OpticPlot, Opticstart, OpticEnvel, OpticTune, OpticMatch, OpticWOMK, OPAtune, knobframe, EdElSet, Mathlib,

VGraph, ASaux.

This is the main GUI for (linear) optics development. It contains procedures for initialization
the form, for plotting, handlers for mouse events and GUI buttons.

OpticPlot.pas (98.3k)

uses OPAglobal, OPAElements, OPAtune, MathLib, ASfigure, VGraph, ASaux.

Linear beam optics includes closed orbit finder [>CloseOrbit], periodic solution for cou-
pled and uncoupled lattices [>NormalMode, FlatPeriodic], propagation through elements
[>Lattel] and full linear optics including integrals [>LinOp] with several options for peri-
odic, symmetric, single pass forward, backward, from marker calculations [>OpticCalc]. Plot
routines show beta functions and dispersions [>PlotBeta], or orbit, envelopes and apertures
[>PlotOrbit, PlotEnv, PlotApertures], or magnetic fields [>PlotMag]. Lattice param-
eters are shown in a table [>FillBeamTab, FillBetaTab] and several output files can be
printed [>Print...]

Opticstart.pas/.lfm (17.3k)

uses OPAglobal, OpticPlot, MathLib, ASaux.

GUI to select the starting conditions for the optics solution, either periodic/symmetric, or from
initial values for orbit, beta functions, dispersion and coupling given at the start or end of
lattice or at an intermediate optics marker.

43

OpticEnvel.pas/.lfm (9.9k)

uses OPAglobal, OpticPlot, ASaux.

Select the plot mode to show beta functions (normal mode and/or projected) and dispersions,
envelopes with orbit and apertures or magnetic fields. Several parameters may be set, e.g. the
reference radius to calculate magnetic fields etc.

OpticTune.pas/.lfm (6.1k)

uses OPAglobal, OpticPlot, MathLib, ASaux.

Calculates a 2× 2 matrix how the tunes depend on a scaling factor applied to all focusing and
defocusing quads and allows the working point to shifted this way.

OpticWOMK.pas/.lfm (2.5k)

uses OPAglobal, OpticPlot.

Asks whether an optics solution should be stored in the optics markers.

OpticMatch.pas/.lfm (42.0k)

uses OPAglobal, OpticPlot, OpticMatchScan, Knobframe, ASfigure, ASaux.

Matching of linear optics using a Newton-Raphson minimizer: Optics parameters to be adjusted
with target values and at least the same number of knobs (e.g. quadrupole strenght, variables
etc.) are selected, then the minimizer proceeds using the square matrix of most sensitive knobs,
which is recalculated after each steps to take into account non-linearities. Reduced step size
can be set for better convergence. It is possible to run a scan over some range of a target value.
=⇒ The matching procedure is quit old and restricted to uncoupled lattices. A more elaborate
minimizer also including limits for the knobs should be implemented.

OpticMatchScan.pas/.lfm (2.9k)

uses OPAglobal, OpticPlot, ASaux.

This is just a GUI to enter the range for a target function to run a scan.

knobframe.pas (11.5k) [Frame]

uses OPAglobal, OpticPlot, Mathlib, ASaux.

The frame provides a knob to control a parameter (quad strength, variable value etc.) including
limits and a reset function. A numner of knob frames is embedded in the GUI [OpticView,

44

OPAOrbit] as space permits. Knob actions trigger calculations and plots. Knobs may be pas-
sive, if the quantity is controlled by a variable connected to another knob. Therefore a knob
has to know his fellow knobs and trigger their updates [>BrotherHandles]

OPAtune.pas/.lfm (15.9k)

uses OPAglobal, ASfigure, ASaux.

GUI window to show a tune diagram: resonances up to selected orders and the working point,
a line or a group of tune points is shown in the diagram. This procedure is used in linear
optics to show the working point or it variation with momentum, in non-lineare optics to show
a predictions for the tune footprint and in tracking to show the tracked tune footprint.

OPAorbit.pas/.lfm (73.0k)

uses OPAglobal, OpticPlot, OpticStart, Knobframe, MathLib, ASfigure, ASaux.

This unit calculates the beam orbit. It is used to either study orbit distortion and correction
(usually in periodic mode) or to study injection (usually in forward mode) – a corresponding
flag is set at start. Most procedureds in the unit are used to set up the rather complex GUI
with knobs for correctors, kickers and BPMs and various panels for orbit correction, plotting
or injection studies.

In orbit mode, correlated misalignments are applied, the response matrix is calculated and
pseudo-inverted using an SVD procedure in order to correct the orbit. A loop function may
run several error seeds to obtain some statistics.

In injection mode, kickers may be synchronized for correct timing, and the injected (and/or
stored) beam trajectory is calculated for a few turns.

In both modes, when leaving the unit, results for misalignments and corrector settings, or for
kicker settings, are saved internally and will be used in subsequent linear optics calculations or
tracking.

=⇒ There are problems with misalignments in tracking, not yet solved.

Note, that correctors and BPMs defined with reserved names CH,CV,MON in the lattice file are
internally expanded to a set of individual elements, e.g. CH001... when unpacking the lattice
[OPAGlobal>MakeLattice].

F.4 Longitudinal optics

OPA does not contain true longitudinal dynamics, i.e. all calculations are for fixed momentum
offset, and tracking proceeds only in 4-D, not in 6-D. There are no cavities and no acceleration.

45

OPAmomentum.pas/.lfm (26.8k)

uses OPAglobal, OpticPlot, ASfigure, OPAtune, MathLib, ASaux.

MomentumLib.pas (16.5k)

uses OPAglobal, OpticPlot, ASfigure, OPAtune, MathLib, ASaux.

These two procedures calculate linear optics (periodic or forward) for some momentum range,
show the results and apply a polynomial fit. The first procedure mainly controls the GUI, the
second one is for calculation and plotting. Results to fit and show are selected in the GUI.
Results for path length are saved internally to be used when plotting the bucket (see next unit).
Tune results are shown in a tune diagram.

=⇒ A Powell minimizer was implemented once for a special purpose (non-linear bunch com-
pressor study): it takes selected multipoles as knobs to adjust a momentum dependent function
(e.g. X(δ)) to a target function. However this implementation was “quick and dirty” and may
be removed again.

Bucket.pas/.lfm (19.4k)

uses OPAglobal, ASfigure, MathLib, Conrect, ASaux.

The RF bucket is calculated based on up to five orders of momentum compaction and RF
harmonics as described in Appendix D, [>CalcBucket], and a contour plot of equipotentials
and the separatrix is shown.

The coefficients for momentum compaction may be taken over from the previous unit on mo-
mentum dependent optics. The estimates for momentum acceptance and bunch length are
saved for re-use in the Touschek tracking unit (see below).

F.5 Non-linear Optimization

Non-linear optimization uses a penalty function composed from a fixed set of Hamiltonian modes
on one side, which are controlled by a variable set of sextupoles and octupoles on the other side.
The dependencies are complicated, if the two minimizers are running (Powell for first and second
order sextupole terms, SVD for first order octupole terms), or if chromaticity is automatically
adjusted, or if target values for the (non-resonant) Hamiltonian modes are changed. This
requires to pass handles from the GUI program [OPAChroma] to the frames for the Hamiltonian
modes and the multipoles, [>CSexLine, CHamLIne] and between these. In order to avoid
circular dependencies, two intermediate layers [>ChromGUILib1,2] were introduced.

=⇒ The nested handles are rather messy. It works, but could be entangled and simplified.

46

OPAChroma.pas/.lfm (40.2k)

uses OPAglobal, ChromLib, ChromGUILib1, ChromGUILib2, CHamLine, CSexLine, OPAChromaSVector, OPAtune, MathLib, ASfigure,

ASaux.

Initialization of the GUI, allocating the frames for Hamiltonians and multipoles and passing
all the handles between, [>Start] and dimensioning of the GUI [>ResizeAll]. Set up (and
start) the Powell minimizer for the sextupoles [>ButMinClick] and set up the SVD-minimizer
for the octupoles [>ChkOctClick].

ChromLib.pas (60.2k)

uses OPAglobal, OpticPlot, OPAElements, OPAtune, MathLib, Vgraph, ASaux.

The physics part: at start, all kicks from sextupole, octupole, combined function bend (and
decapole) families are collected, and matrices are set up to get the Hamiltonian modes from the
Msx sextupole and Moc octupole families. These are a 10×Msx matrix for first order sextupole,
a 11×M2

sx matrix for the second order sextupole, and a 13×Moc for first order octupole. Matrix
elements are sums over optical functions at all kicks (thick sextupoles contain several kicks).
Quadrupoles contribute to chromatic modes and are included as a constant offset vector. These
calculations are rather time consuming but only done once at start [>ChromInit, S Matrix].
Hamiltonian modes are calculated for the lattice structure considered as one period. In order
to get the results for many periods, complex multiplication factors are required as described in
Appendix A [>S Period].

Chromaticity up to third order is calculated from numerical differentiation [>ChromDiff].
Hamiltonian modes are calculated from multipole settings using the pre-calculated matrices
and weight factors entered manually in order to visualize the results and combine them into a
single, scalar penalty function, see Eq.71 [>Driveterms]. Chromaticity is corrected with two
selected sextupole families using a simple 2×2 matrix [>UpdateChromMatrix, GetLinChroma,

ChromCorrect].

For the octupole matrix a SVD decomposition is performed for correction of the second order
sextupole terms which are first order octupole terms. The SVD weight vector is provided for
filtering, since usually a “hard” correction using all weights does not work well [>Oct SVDCMP].
Decapoles affect only the third order chromaticities. Other third order effects are not included.

ChromGUILib1.pas (1.9k)

uses ChromLib, CHamLine.

This small piece of code is mainly for passing handles to the[>CHamLine] frames.

ChromGUILib2.pas (2.7k)

47

uses ChromLib

Pass handles to the octupole SVD functions in order to enable automatic execution during
minimization, and filters the SVD weight factors.

CHamLine.pas/.lfm (10.7k) [Frame]

uses OPAglobal, ChromLib, ChromGUILib2, CSexLine, ASaux.

25 of these frames are embedded in the GUI at start. They display the results for the 25
Hamiltionian modes and allow weight and target values to be set. A change of target or weight
triggers an update of the calculations [>UpdateWeight, UpdateTarget]. Changing any mul-
tipole manually or by the minimizer of course changes these frames.

CSexLine.pas/.lfm (11.9k) [Frame]

uses OPAglobal, ChromLib, ChromGUILib1, ChromGUILib2, OPAChromaSVector, ASaux.

At start, one of these frames is embedded in the GUI for each family of sextupole, octupole,
decapole and combined function bend. It provides a knob for the magnet strength. Changing
it triggers a calculation of the Hamiltonian modes. If the minimizer is running, the strength
field has to follow [>UpdateVal...]

OPAChromaSVector.pas/.lfm (3.3k)

uses OPAglobal, ChromLib, MathLib, ASfigure.

Opens a small window to visualize the first order sextupole modes in the complex plane.

F.6 Tracking

Tracking is performed in unit TrackLib, used by the three GUIs for phase space, dynamic
aperture and Touschek tracking:

OPAtrackP.pas/.lfm (44.8k)

uses OPAglobal, OPAtune, TrackLib, MathLib, Vgraph, ASfigure, ASaux.

Phase space tracking: the GUI contains four plot windows for the transverse phase spaces and
Fourier spectra, and several panels for different options. Single particles are started from coor-
dinates entered manually in edit fields or passed from ASfigure mouse events [>ButRunClick].
For amplitude dependent tune shifts (ADTS) particle start coordinates are stepped up to aper-
ture limits [>ButTushClick]. For simulation of injection, a beam ellipse populated with many
particles can be tracked [>StartEnsemble, ButBeamRunClick, TrackBeam]. Most of the unit
contains event handlers and plot routines.

48

OPAtrackDA.pas/.lfm (30.9k)

uses OPAglobal, OPAtune, TrackLib, MathLib, Vgraph, ASfigure, ASaux.

Dynamic aperture tracking: particles are started on a grid covering the area (x, y), (x, δ) or
(y, δ). The grid is successively refined to get an early impression [>gridSetup]. Physical aper-
tures are calculate by projecting all apertures to the trackpoint [>Silhouette]. The other
procedures are for event handling and plotting.

OPAtrackT.pas/.lfm (45.7k)

uses OPAglobal, OPAtune, TrackLib, OpticPlot, MathLib, Vgraph, ASfigure,ASaux.

Touschek tracking: Lifetime is calculated as described in Appendix C.1 from bunch volume and
momentum acceptance (MA). The MA is the minimum of the linear MA given by the beam
pipe apertures [>CalcMALin], of the RF-MA which is derived from input parameters or has
been calculated previously by Bucket, and of the dynamic MA obtained from tracking and
binary search for min./max. stable momentum offset [>MADyn, Trackdbins, TrackLat].

The bunch volume is calculated from the periodic optics solution with its emittance and energy
spread [>CalcSigma].

The GUI has two panels for several input values affecting lifetime and for derived values
[>Output].

Coulomb lifetime is calculated from the effective acceptance, hower this includes only the phys-
ical, not the dynamic aperture limits [>CalcAccEL]. Bremsstrahlung lifetime uses the negative
MA as used for Touschek lifetime too. Total lifetime is given as the inverse of the sum of the
loss rates [>CalcLifetime].

TrackLib.pas (46.2k)

uses OPAglobal, OpticPlot, OPAElements, MathLib;

At start, all linear elements are concatenated to matrices alternating with non-linear (or time
dependent) kicks in order to speed up tracking [>TrackinMatrix]. Physical acceptances are
calculated either from element apertures or from given apertures to estimate the maximum
range for tracking [>Acceptances]. Both calculations have to be re-done when changing the
reference momentum [>Init dpp]. The available aperture in the (x, y)-plane is calculated for
a set of rays to obtain the silhouette, i.e. projection of beam pipe apertures to the trackpoint
as described in Appendix B [>AmpKappa]. Optics parameters at the Trackpoint are calculated,
which may be located anywhere, even inside an element [>TrackPoint].

Tracking proceeds turn by turn at fixed momentum [>OneTurn] (or with changing momentum
based on a simple model of synchtron oscillation [>OneTurn S]). Tracking one turn proceeds

49

by repeated application of the matrix for a series of linear elements, followed by a non-linear
(or time dependent) kick and a check for particle loss [>TMatKick].

The procedures in the last third of the unit (from SineWindow to the end) are for signal pro-
cessing, to calculate the FFT, interpolate frequencies and guess the related resonances.

F.7 Lattice Layout

OPAGeometry.pas/.lfm (63.2k)

uses OPAglobal, OpticPlot, MathLib, ASaux.

This unit displays the lattice layout, peforms geometric matching and exports various files. The
orbit is calculated in 3D-space from element lengths, deflection and rotation angles [>CalcOrbit].
The orbit as curve in space is rotated and translated depending on the initial conditions
[>setDrawMode]. The elements are made from faces, i.e. polygons in 3D-space [>CalcFaces],
which become polygons when projected to 2D-space of the image plane [>CalcPoly]. Chang-
ing the initial conditions does not change the faces themselves but applies the same translationa
and rotation to all of them [>TransPoly].

=⇒ Up to now the elements are “flat”, i.e. represented by a face of some length and width in
the midplane. If changing the initial angle, they look ugly. It would be straightforward to define
boxes made from several faces, however this would also require some rendering algorithm for
3D-display.

Several files can be exported, among them a [.geo] file of polygons [>butListClick], which
can also be read [>ReadFiles] in order to show several lattice structures in one plot.

Geometric matching looks for lattice variables with names starting with “G”, which control
lengths and deflection or rotation angles of elements (in [>Start]) and runs an SVD minimizer
to adjust the final (or initial) coordinates and angles of the lattice structure to a target value
[>butMatchClick].

=⇒ Geometric matching works but is not well implemented yet. More checks are required, and
also an “undo” button should be added.

F.8 Temporary

OPACurrents.pas/.lfm (10.3k)

uses OPAglobal, ASaux.

This unit calculates magnet currents using two tables for allocation (i.e. hardware type of
the magnet in the lattice) and magnet calibration, which may be read with the lattice in
[OPAGlobal> ReadAllocation, ReadCalibration]. Calculating the current from the strength

50

parameters and v.v. is done in [OPAGlobal> getIfromK, getKfromI]. Due to non-linearity
of the calibration curve, a bisection root finder is used [19].

The OPACurrents unit provides a GUI and writes a .snap file to be read by the storage ring
control system. Among other data, this file also includes the matrices for tune change, if
previously calculated by [OpticTune], and for chromaticity change, calculated by [ChromLib>

UpdateChromMatrix].

=⇒ The current calculation should be done here, not in OPAGlobal.

opatest.pas (37.3k)

uses OPAglobal, OpticPlot, MathLib, ASaux.

This unit is for temporarily needed procedures or for testing new stuff, which then, if it works
well, is moved to another place.

In the present (June 13, 2022) version the unit contains, among others, three procedures for
reading MAD .mad, MAD sequence .seq and ELEGANT .lte files. The procedures are yet
incomplete but nevertheless facilitate reading these files.

F.9 Graphics and little helpers

These units are not in the OPA folder, because they are of more general use and part of other
projects too:

..ASfigure.pas/.lfm (9.9k) [Frame]

uses Vgraph, ASAux.

This frame provides a paintbox (i.e. a plot window) to be embedded in a GUI and a Vplot-
object as defined in VGraph. Added functionality includes handles to Edit fields in order to
translate mouse actions to numbers (used in OPATrackP) [>PassEditHandle..]

..Vgraph.pas (25.1k)

This unit defines a canvas-based object with many public procedures for floating point graph-
ics. On creation it receives a canvas handle (for example, the canvas of the ASfigure-paintbox)
[>Create]. Some plot procedures wrap standard methods from the Lazarus Graphics unit
but use floating point numbers instead of integers. Other plot procedures provide extended
functionality, for example plotting a (phase space) ellipse [>Ellipse] or drawing “nice” axes
[>Axis].

51

..Conrect.pas (14.4k)

Calculation of contour lines for a 2D-array of data [23].

..ASaux.pas (7.9k)

A collection of “little helpers” for formatting, string operations, reading edit fields and dimming
colors. It also includes an index sort algorithm.

52

